
ISC5317/ISC499 Computational Evolutionary Biology

Assignment 1: Reading a NEWICK tree

1. use the Python fragment firsttree.py and complete the function myread(self, newick,

p) in the Tree class. newick is the string that contains the Newick tree, for example test

your program using this tree: ((frog:0.1,fish:0.2):0.5,(cat:0.1,dog:0.1):0.8);. But

your program should be able to read any tree (I will use a di↵erent Newick string to test your

code). Using one of the two algorithms specified in the handout to solve this assignment

(recursive or non-recursive tree reading. If you are uncertain about Python, talk to Kyle and

see him during the open-lab time.

2. Ideally, you would read the Newick string from a file, but if you are a Python beginner, then

define the Newick string near the beginning of your main code section.

Make sure that your code is well documented and follows good programming practices. Mail the

source code, a user description (what is input, how to run, what is output), and the example data

sets to Peter (beerli@fsu.edu) no later than Tuesday September 12. Best practices are to send

a compressed folder (zip or .tar.gz) containing all files. The name of the folder should be your first

name and the assignment number (for example peter1).

1

Page 1 of 4

firsttree.py 8/31/17, 9:59 AM

node and tree class
class Node defines:
-Node (see __init__)
-tip : defines tip node and sets label
-interior : defines interior node and sets

connections left and right
-myprint : prints name and branchlength associated

with a node
-debugprint : prints the content of a node
class Tree defines:
-Tree (see __init__) : defines root
-myprint : prints the tree in NEWICK format
#your assignment -myread : reads a NEWICK string and

creates a tree
-printTiplabels: prints tip labels
#
PB Oct 2011 (2017 reviewed and revised)
from __future__ import print_function
import sys
import random
import math

class Node:
 """
 Node class: this is a container for content that is saved
 at nodes in a tree
 """
 def __init__(self):
 """
 basic node init
 """
 self.name = ""
 self.left = -1
 self.right = -1
 self.ancestor = -1
 self.blength = -1
 self.sequence = []
 def tip(self,name, blength=-1):
 """
 sets the name of a tip
 """
 self.name = name
 self.left = -1

Page 2 of 4

firsttree.py 8/31/17, 9:59 AM

 self.right = -1
 self.ancestor = -1
 self.blength = blength
 def interior(self,left,right,blength=-1):
 """
 connects an interior node with the two descendents
 """
 self.name = ""
 self.left = left
 self.right = right
 self.ancestor = -1
 self.blength = blength
 def myprint(self):
 """
 Prints the content of a node: name if any and

branchlengths if any
 """
 if(self.name!=""):
 print(self.name,end=' ')
 if(self.blength != -1):
 print(":{}".format(self.blength),end=' ')
 def debugprint(self):
 """
 Prints the content of a node: name if any and

branchlengths if any
 """
 print("Name:", self.name)
 print("Descendents:", self.left, self.right)
 print("Branch-length: {}".format(self.blength))

class Tree(Node):
 """
 Node class: this is a container for content that is saved
 at nodes in a tree
 """
 i = 0

 def __init__(self, rootnode):
 self.root = rootnode
 #self.root.name = "root"
 def myprint(self):

Page 3 of 4

firsttree.py 8/31/17, 9:59 AM

 self.mynodeprint(self.root)
 print(";")

 def mynodeprint(self,p):
 """
 prints nodes in a tree recursively in Newick format
 """
 if(p.left != -1):
 print("(",end=' ')
 self.mynodeprint(p.left)
 print(",",end=' ')
 if(p.right != -1):
 self.mynodeprint(p.right)
 print(")",end=' ')
 p.myprint()
 print("",end=' ')

 # assignment 1 create this function
 def myread(self,newick, p):
 """
 reads a tree in newick format
 """
 pass

if __name__ == '__main__':
 # we create a small tree as a test for the printing

functions
 # with 3 species, 1 interior node and 1 root node
 a = Node()
 a.tip('A',1)
 b = Node()
 b.tip('B',1)
 c = Node()
 c.tip('C',3)
 d = Node()
 d.interior(a,b,2)
 e = Node()
 e.interior(d,c,0)
 mytree = Tree(e)
 mytree.myprint()
 a.debugprint()

Page 4 of 4

firsttree.py 8/31/17, 9:59 AM

 d.debugprint()

