
Algorithm to simulate data on a tree

Required: a tree with branch lengths and a mutation transition rate matrix
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Figure 4: The model tree for the simulations. We simulate data on this tree. The branch lengths are
denoted v

i

.

In this section, we will test our knowledge obtained in the previous section by simulating DNA sequences
on a phylogenetic tree. Simulation is often used in phylogenetics. Simulation has been used to elucidate the
statistical properties of di↵erent phylogenetic methods, and it can be used to generate the null distribution
of a test statistic in phylogenetic hypothesis testing. In other words, learning to simulate DNA sequences is
not a wasted e↵ort. Not only can you strengthen your intuition of phylogenetic methods, but you may also
be able to apply simulation for your own research.

How exactly should one simulate evolution on a phylogeneitc tree? One basic point is that an alignment
should be simulated on a site-by-site basis. That is, we first simulate the data at the first site, then the second
site, and so on. We can take this approach because of the assumption of independence of the substitution
process across sites; to simulate the data at a particular site (column in the alignment), we don’t need to
know the results of the simulation at any other site.

Another basic point is that we must know all of the parameters of the simulation: we have to decide
on the precise phylogenetic tree on which to simulate the DNA sequences; we need to know the branch
lengths on this tree; and, finally, we must pick a substitution model. The substitution model is a matrix
of rates, specifying the rate of change from one nucleotide to another. In other words, we are taking a
God-like view of the situation. We know everything about the evolutionary history and process. Of course,
in reality we never know everything about how organisms evolved, but must make strong assumptions about
how evolution occurred in order to estimate (make educated guesses) at the underlying evolutionary history.
However, pretending to be a God, even for a little while, is a great feeling.

In the following, we will evolve DNA sequences on the four-taxon tree shown in Figure 4. We will also
assume that DNA substitution occurs according to the HKY85 model with the parameters fixed to the
following values:  = 5, ⇡

A

= 0.4, ⇡

C

= 0.3, ⇡

G

= 0.2, and ⇡

T

= 0.1. The rate matrix, then, is

Q = {q
ij

} =

0

BB@

�0.886 0.190 0.633 0.063
0.253 �0.696 0.127 0.316
1.266 0.190 �1.519 0.063
0.253 0.949 0.127 �1.329

1

CCA

Now, we are ready to simulate data on the tree of Figure 4. We will go over four di↵erent methods for
simulating data, each of which takes advantage of our knowledge of continuous-time Markov chains.

2.1 Method 1

The first method only relies on our ability to generate exponentially distributed random numbers. If we
generate a uniform random number on the interval (0,1), we can generate an exponential random number
(with parameters �) using the transformation t = � 1

�

log
e

(u) (where u is the uniform random number and
t is the exponentially distributed random number). The first method involves an addition to the tree of
Figure 4 which seems unusual: We take the tree of Figure 4, and add a ‘tail’ to it—a branch that extends
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A

Figure 5: The model tree for the simulations, with a tail. The tree of Figure 4, with a long branch
at the root that starts in nucleotide A.

for some distance from the root of the tree. In this case, the branch at the root of the tree is v0 = 10.0 in
length. Moreover, we assume that the process is in state (nucleotide) A at the very root of the tree. The
situation we have is like that shown in Figure 5.

We simulate the process starting at the root of the tree. The process is in state A, meaning that the only
relevant row of the rate matrix is the first one:

Q = {q
ij

} =

0

BB@

�0.886 0.190 0.633 0.063
· · · ·
· · · ·
· · · ·

1

CCA

We wait an exponentially distributed amount of time with parameter � = 0.886 until the next substitution
occurs. When the substitution occurs, it is to a C, G, or T with probabilities 0.190

0.886 = 0.214, 0.633
0.886 = 0.714,

and 0.063
0.886 = 0.072, respectively. In the first section, we used this method for simulating along a single branch

of a tree. Here we apply the method with vigor, applying it to each branch in the tree from the root to
the tips. We continue to simulate up the root branch of the tree until our simulation exceeds the length of
the branch. We then record the nucleotide state the process was in when it exceeded a length of 10. We
write this state at the end of the root branch, where it splits into branches 1 and 6. We then repeat the
simulation process for branch 1 and then branch 6, recording the state the process is in at the end of those
two branches. We then concentrate our attention on branches 4 and 5, and then on branches 2 and 3. At
the end, we should have nucleotides at the ends of branches 1, 2, 3, and 4.

One puzzling aspect of this simulation is why we always start the process in nucleotide A, and why we
even bothered to add the tail to the root of the tree. We did this because for Method 1, we only are going to
allow ourselves to generate exponential random numbers. If this is the case, we can use our understanding
of the rate matrix as specifying waiting times between substitutions to complete our simulation. However,
we are not allowing ourselves knowledge of the stationary distribution of the substitution process. Hence,
we always start our simulations in a particular nucleotide (in this case we chose to start in the nucleotide A),
and then simulate the process for a long time along the root (tail) branch of the tree. The hope is that if we
make the length of the tail branch long enough, that the process is at stationarity by the time it reaches the
first split in the tree (the speciation event that eventually produces the four species at the tips of the tree).

Method 1 relies on the idea that we can come pretty near to stationarity with a moderately long branch.
We know that the stationary distribution of the HKY85 process of nucleotide substitution with the specific
parameters we chose is ⇡

A

= 0.4, ⇡

C

= 0.3, ⇡

G

= 0.2, ⇡

T

= 0.1. We also know that the transition probability
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2.3.5 Summary of nucleotide models

Using this simplified Q matrix we express all models

Q =

0

BBBBB@

�(a⇡C + b⇡G + c⇡T ) a⇡C b⇡G c⇡T

a⇡A �(a⇡A + d⇡G + e⇡T ) d⇡G e⇡T

b⇡A d⇡C �(b⇡A + d⇡C + f⇡T ) f⇡T

c⇡A e⇡C f⇡G �(c⇡A + e⇡C + f⇡G)

1

CCCCCA

(27)

GTR

TN

F81

JC

HKY
F84

K2P

+Transition/Transversion

+uneqal base freq.

+uneqal base freq.

+Transition/Transversion

+Purine/Pyrimidins

+all rates are different
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Details and explanation  see 
mutation model handout
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The Plan 

• Probability review 
• Likelihood 
• Substitution 

models

• Markov model basics 
• Transition probabilities 
• Survey of models 
• Rate heterogeneity 
• Codon models 
• Amino acid models

• The AND and OR rules 
• Independence of events

• What does it mean? 
• Likelihood of a single sequence 
• Maximum likelihood distances 
• Likelihoods of trees
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Combining probabilities
• Multiply probabilities if the component events 

must happen simultaneously (i.e. where you 
would naturally use the word AND when 
describing the problem)

(1/6) × (1/6) = 1/36

Using 2 dice, what is the probability of

AND ?

dice gif from http://www.picgifs.com/graphics/dice/graphics-dice-609131-779917/ 
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AND rule in phylogenetics

One use of the AND rule in phylogenetics 
is to combine probabilities associated with 
individual branches to produce the overall 
probability of the data for one site.

p0

p1

p2

p3 p4

A

A CA

A

probability 
of A at root

probability of C at tip given ancestral state A

we have observed these states

pretend (for now) we also know 
these ancestral states

probability of 
A at tip given 
A at root

probability of A at end of edge given A at root

probability of A at tip given ancestral state A
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Combining probabilities

• Add probabilities if the component events are 
mutually exclusive (i.e. where you would 
naturally use the word OR in describing the 
problem)

(1/6) + (1/6) = 1/3

Using one die, what is the probability of

OR ?
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Combining AND and OR

8

(1/36) + (1/36) + (1/36) + (1/36) + (1/36) + (1/36) = 1/6

1 and 6

2 and 5

3 and 4

4 and 3

5 and 2

6 and 1

What is the probability that the sum of two dice is 7?
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Using both AND and OR in phylogenetics

AND rule used to compute probability of the observed data for each combination 
of ancestral states. 

OR rule used to combine different combinations of ancestral states.

A

A C

A

A

A

C

A

G

A

T

T

T

...

...
(16 combinations of ancestral states)

p0

p1

p2

p3 p4
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Independence

Pr(A and B)   =  Pr(A) Pr(B|A)
joint probability conditional 

probability

Pr(A and B) = Pr(A) Pr(B)

...then events A and B are independent and we can 
express the joint probability as the product of Pr(A) 
and Pr(B)

If we can say this...
Pr(B|A) = Pr(B)

This is always true...
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Non-independence in molecular 
evolution

11

T

C
short time

The state present in the 
descendant is not independent 
of the state in the ancestor

C

T

long time

less probable more probable
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Conditional Independence

Pr(A and B|C) = Pr(A|C) Pr(B|C)

...then events A and B are conditionally independent 
and we can express the joint (conditional) probability 
as the product of Pr(A|C) and Pr(B|C)

Pr(A|C) ≠ Pr(A)

If we can say this...
Pr(B|A,C) = Pr(B|C)

Pr(B|C) ≠ Pr(B)
Assume both A and B depend on C:

Pr(B|A,C) = Pr(B|C)

Pr(A and B|C) = Pr(A|C) Pr(B|C)
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Conditional independence in 
molecular evolution 

13

A G G T C C The site data patterns AGG 
and TCC are assumed by 

most models to be 
conditionally independent.  

The patterns both depend on 
the underlying tree (including 

edge lengths) and the 
substitution model.
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Likelihood
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The Likelihood Criterion
The probability of the observations computed using a model tells 

us how surprised we should be. 
The preferred model is the one that surprises us least.

Suppose I threw 20 dice 
down on the table and this 
was the result...



Pr(obs.|fair dice model) =
(

1
6

)20

=
1

3, 656, 158, 440, 062, 976

Paul O. Lewis (2017 Woods Hole Workshop in Molecular Evolution) 16

The Fair Dice model

You should have been very 
surprised at this result 
because the probability of 
this event is very small: 
only 1 in 3.6 quadrillion!



Pr(obs.|trick dice model) = 120 = 1
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The Trick Dice model 
(assumes dice each have 5 on every side)

You should not be surprised 
at all at this result because the 
observed outcome is certain 
under this model
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Results

Model Likelihood Surprise 
level

Fair Dice 1 
3,656,158,440,062,976

Very, very, 
very surprised

Trick Dice 1 Not surprised 
at all

winning model maximizes likelihood 
(and thus minimizes surprise)



Outcome Fair coin model Two-heads 
model

H 0.5 1

T 0.5 0

1 1
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Likelihood: why a new term?

Probabilities of data outcomes 
given one particular model 

sum to 1.0

Likelihoods of 
models given one 
particular data 

outcome are not 
expected to sum 

to 1.0
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Likelihood and model 
comparison

• Analyses using likelihoods ultimately 
involve model comparison 

• The models compared can be discrete (as in 
the fair vs. trick dice example) 

• More often the models compared differ 
continuously: 
– Model 1: branch length is 0.01 
– Model 2: branch length is 0.02 
– Model 3: branch length is 0.03

20

Rather than having 
an infinity of models, 
we instead think of 

the branch length as a 
parameter within 

one model
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Probabilities lie between 0 and 1, which 
means log(x) will always be negative if 

x represents a probability.

In this talk (and in 
phylogenetics in general), 

ln(x) = log(x)

Likelihoods vs. log-likelihoods



log L = 12 log(πA) + 7 log(πC) + 7 log(πG) + 6 log(πT )
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Likelihood calculated from a 
single sequence

GAAGTCCTTGAGAAATAAACTGCACACACTGG

First 32 nucleotides of the ψη-globin gene of gorilla:

We can already see by eye-balling this that a model allowing 
unequal base frequencies will fit better than a model that assumes 
equal base frequencies because there are about twice as many As 

as there are Cs, Gs and Ts.

Note that we are assuming independence among sites here





Pr(G) Pr(G|G, αt) Pr(A) Pr(G|A, αt)
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root (arbitrary)

Likelihood of the simplest tree
sequence 1 sequence 2

To keep things simple, assume that the sequences are only 2 
nucleotides long:

GA GG

site 1 site 2site 1 site 2

Note that we are NOT assuming independence here
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Maximum likelihood estimation

gorilla   GAAGTCCTTGAGAAATAAACTGCACACACTGG 
orangutan GGACTCCTTGAGAAATAAACTGCACACACTGG

First 32 nucleotides of the ψη-globin gene of gorilla and orangutan:

Maximum likelihood estimate 
(MLE) of αt is 0.021753

Plot of log-likelihood as a function 
of the quantity αt



v = 3αt
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number of substitutions = rate × time

A C G T
α α α

Overall substitution rate is 3α, so the expected 
number of substitutions (v) is

This is the rate at which an 
existing A changes to a T



(
1 substitution
million years

)
100 million years

(
100 substitutions

million years

)
1 million years
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Rate and time are confounded

X Y
100 substitutions

?

On Tuesday, Tracy Heath will introduce models that allow 
separate estimation of rates and times, but without extra 
information/constraints, sequence data allow only estimation 
of the number of substitutions.

evolutionary distance



Model Expected no. substitutions: v = {r}t
JC69

F81
K80

HKY85

v = {3α} t

v = {2µ(πRπY + πAπG + πCπT )} t

v = {β(κ + 2)} t

v = {2µ [πRπY + κ(πAπG + πCπT )]} t
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Evolutionary distances for several common 
models

In the formulas above, the overall rate r (in curly brackets) is a function of all 
parameters in the substitution model.

One substitution model parameter is always 
determined from the edge length; the others are 

usually global (i.e. same value applies to all edges).



Paul O. Lewis (2017 Woods Hole Workshop in Molecular Evolution) 31

A

A

A T

C

C

Likelihood of an unrooted tree
(data shown for only one site)

Ancestral states like this are 
not really known - we will 
address this in a minute.

Arbitrarily 
chosen to serve 
as the root node

States at the tips are 
observed.
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A

A

A T

C

C
ν2

ν1
ν3

ν4

ν5

Likelihood for site k

πA

PAA(ν1) PAA(ν2) PAC(ν3) PCT(ν4) PCC(ν5)

ν5 is the expected number 
of substitutions for just this 

one branch

Note use of the AND probability rule

p0

p1

p2

p3 p4

A

A CA

A

From slide 6
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Brute force approach would be to calculate Lk for all 16 
combinations of ancestral states and sum them

Note use of the OR probability rule
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Pruning algorithm  
(same result, less time)

Felsenstein, J. 1981. Evolutionary trees from DNA sequences:   
a maximum likelihood approach. Journal of Molecular Evolution 17:368-376

Many calculations can be done just 
once and then reused several times



More explanation will follow


