
UNIX files searching, and other interrogation techniques

William Knottenbelt (2001) http://www.doc.ic.ac.uk/~wjk/UnixIntro

• Ways to examine the contents of files.
• How to find files when you don't know how their exact location.
• Ways of searching files for text patterns.
• How to sort files.

Tuesday, June 1, 2010

http://www.doc.ic.ac.uk/~wjk/UnixIntro
http://www.doc.ic.ac.uk/~wjk/UnixIntro

William Knottenbelt (2001) http://www.doc.ic.ac.uk/~wjk/UnixIntro

Besides cat there are several other useful utilities for investigating the contents of files:
• file filename(s)
• file analyzes a file's contents for you and reports a high-level description of what type of file it appears

to be:
 $ file myprog.c letter.txt webpage.html
 myprog.c: C program text
 letter.txt: English text
 webpage.html: HTML document text
file can identify a wide range of files but sometimes gets understandably confused (e.g. when trying to
automatically detect the difference between C++ and Java code).

• head, tail filename
• head and tail display the first and last few lines in a file respectively. You can specify the number of

lines as an option, e.g.
 $ tail -20 messages.txt
 $ head -5 messages.txt
tail includes a useful -f option that can be used to continuously monitor the last few lines of a
(possibly changing) file. This can be used to monitor log files, for example:
 $ tail -f /var/log/messages
continuously outputs the latest additions to the system log file.

File inspectors

Tuesday, June 1, 2010

http://www.doc.ic.ac.uk/~wjk/UnixIntro
http://www.doc.ic.ac.uk/~wjk/UnixIntro

• od options filename (octal dump)
• od can be used to displays the contents of a binary or text file in a variety of formats, e.g.

 $ cat hello.txt
 hello world
 $ od -c hello.txt
 0000000 h e l l o w o r l d \n
 0000014
 $ od -x hello.txt
 0000000 6865 6c6c 6f20 776f 726c 640a
 0000014

File inspectors

Tuesday, June 1, 2010

There are at least three ways to find files when you don't know their exact location:

• find
• If you have a rough idea of the directory tree the file might be in (or even if you don't and you're

prepared to wait a while) you can use find:
 $ find directory -name targetfile -print
find will look for a file called targetfile in any part of the directory tree rooted at directory. targetfile
can include wildcard characters. For example:
 $ find /home -name "*.txt" -print 2>/dev/null
will search all user directories for any file ending in ".txt" and output any matching files (with a full
absolute or relative path). Here the quotes (") are necessary to avoid filename expansion, while the 2>/
dev/null suppresses error messages (arising from errors such as not being able to read the contents of
directories for which the user does not have the right permissions).
find can in fact do a lot more than just find files by name. It can find files by type (e.g. -type f for
files, -type d for directories), by permissions (e.g. -perm o=r for all files and directories that can be
read by others), by size (-size) etc. You can also execute commands on the files you find. For example,
 $ find . -name "*.txt" -exec wc -l '{}' ';'
counts the number of lines in every text file in and below the current directory. The '{}' is replaced by
the name of each file found and the ';' ends the -exec clause.
For more information about find and its abilities, use man find and/or info find.

Finding files

Tuesday, June 1, 2010

William Knottenbelt (2001) http://www.doc.ic.ac.uk/~wjk/UnixIntro

• which (sometimes also called whence) command
• If you can execute an application program or system utility by typing its name at the shell prompt, you

can use which to find out where it is stored on disk. For example:
 $ which ls
 /bin/ls

• locate string
• find can take a long time to execute if you are searching a large filespace (e.g. searching from /

downwards). The locate command provides a much faster way of locating all files whose names
match a particular search string. For example:
 $ locate ".txt"
will find all filenames in the filesystem that contain ".txt" anywhere in their full paths.
One disadvantage of locate is it stores all filenames on the system in an index that is usually updated
only once a day. This means locate will not find files that have been created very recently. It may also
report filenames as being present even though the file has just been deleted. Unlike find, locate
cannot track down files on the basis of their permissions, size and so on.

Finding files

Tuesday, June 1, 2010

http://www.doc.ic.ac.uk/~wjk/UnixIntro
http://www.doc.ic.ac.uk/~wjk/UnixIntro

William Knottenbelt (2001) http://www.doc.ic.ac.uk/~wjk/UnixIntro

• grep (General Regular Expression Print)
• $ grep options pattern files

grep searches the named files (or standard input if no files are named) for lines that match a given
pattern. The default behaviour of grep is to print out the matching lines. For example:
 $ grep hello *.txt
searches all text files in the current directory for lines containing "hello". Some of the more useful
options that grep provides are:
-c (print a count of the number of lines that match), -i (ignore case), -v (print out the lines that don't
match the pattern) and -n (printout the line number before printing the matching line). So
 $ grep -vi hello *.txt
searches all text files in the current directory for lines that do not contain any form of the word hello (e.g.
Hello, HELLO, or hELlO).
If you want to search all files in an entire directory tree for a particular pattern, you can combine grep
with find using backward single quotes to pass the output from find into grep. So
 $ grep hello `find . -name "*.txt" -print`
will search all text files in the directory tree rooted at the current directory for lines containing the word
"hello".

Finding matching content in files

Tuesday, June 1, 2010

http://www.doc.ic.ac.uk/~wjk/UnixIntro
http://www.doc.ic.ac.uk/~wjk/UnixIntro

William Knottenbelt (2001) http://www.doc.ic.ac.uk/~wjk/UnixIntro

Finding matching content in files

• The patterns that grep uses are actually a special type of pattern known as regular expressions. Just
like arithemetic expressions, regular expressions are made up of basic subexpressions combined by
operators.
The most fundamental expression is a regular expression that matches a single character. Most
characters, including all letters and digits, are regular expressions that match themselves. Any other
character with special meaning may be quoted by preceding it with a backslash (\). A list of characters
enclosed by '[' and ']' matches any single character in that list; if the first character of the list is the caret
`^', then it matches any character not in the list. A range of characters can be specified using a dash (-)
between the first and last items in the list. So [0-9] matches any digit and [^a-z] matches any
character that is not a digit.
The caret `^' and the dollar sign `$' are special characters that
match the beginning and end of a line respectively. The dot '.' matches any character. So
 $ grep ^..[l-z]$ hello.txt
matches any line in hello.txt that contains a three character sequence that ends with a lowercase letter
from l to z.

Tuesday, June 1, 2010

http://www.doc.ic.ac.uk/~wjk/UnixIntro
http://www.doc.ic.ac.uk/~wjk/UnixIntro

William Knottenbelt (2001) http://www.doc.ic.ac.uk/~wjk/UnixIntro

Finding matching content in files
• egrep (extended grep) is a variant of grep that supports more sophisticated regular expressions. Here

two regular expressions may be joined by the operator `|'; the resulting regular expression matches any
string matching either subexpression. Brackets '(' and ')' may be used for grouping regular expressions.
In addition, a regular expression may be followed by one of several repetition operators:
`?' means the preceding item is optional (matched at most once).
`*' means the preceding item will be matched zero or more times.
`+' means the preceding item will be matched one or more times.
`{N}' means the preceding item is matched exactly N times.
`{N,}' means the preceding item is matched N or more times.
`{N,M}' means the preceding item is matched at least N times, but not more than M times.
For example, if egrep was given the regular expression
 '(^[0-9]{1,5}[a-zA-Z]+$)|none'
it would match any line that either:

◦ begins with a number up to five digits long, followed by a sequence of one or more letters or
spaces, or

◦ contains the word none
• You can read more about regular expressions on the grep and egrep manual pages. Note that UNIX

systems also usually support another grep variant called fgrep (fixed grep) which simply looks for a
fixed string inside a file (but this facility is largely redundant).

Tuesday, June 1, 2010

http://www.doc.ic.ac.uk/~wjk/UnixIntro
http://www.doc.ic.ac.uk/~wjk/UnixIntro

William Knottenbelt (2001) http://www.doc.ic.ac.uk/~wjk/UnixIntro

Sorting lines

There are two facilities that are useful for sorting files in UNIX:
• sort filenames
• sort sorts lines contained in a group of files alphabetically (or if the -n option is specified) numerically.

The sorted output is displayed on the screen, and may be stored in another file by redirecting the output.
So
 $ sort input1.txt input2.txt > output.txt
outputs the sorted concentenation of files input1.txt and input2.txt to the file output.txt.

• uniq filename
• uniq removes duplicate adjacent lines from a file. This facility is most useful when combined with

sort:
 $ sort input.txt | uniq > output.txt

Tuesday, June 1, 2010

http://www.doc.ic.ac.uk/~wjk/UnixIntro
http://www.doc.ic.ac.uk/~wjk/UnixIntro

Exercises

William Knottenbelt (2001) http://www.doc.ic.ac.uk/~wjk/UnixIntro

1. Team up with your neighbor. Create a file called "hello.txt" in your home directory using the
command cat -u > hello.txt.
Ask your partner to change into your home directory and run tail -f hello.txt.
Now type several lines into hello.txt. What appears on your partner's screen?

2. Use find to display the names of all files in the /users/beerli subdirectory tree.What do the errors
mean (if any)?

3. Use find to display the names of all files in the system that are bigger than 1MB. Hint: use man find (-
size)

4. Use find and file to display all files in the /panfs/panasas1/users/beerli/simulations
subdirectory tree, as well as a guess at what sort of a file they are. Do this in two different ways.

5. Create a list of users presently logged in in the system: finger > users.txt
Use grep to isolate the line in users.txt that contains your login details.

6. Use grep and sort to display a sorted list of all files in the
/panfs/panasas1/users/beerli/simulations subdirectory tree that contain the word
“infile.1” somewhere inside them.

7. Use locate to find all filenames that contain the word emacs. Can you combine this with grep to avoid
displaying all filenames containing the word share?

8. Create a file containing some lines that you think would match the regular expression:
(^[0-9]{1,5}[a-zA-z]+$)|none
and some lines that you think would not match. Use egrep to see if your intuition is correct. (use cat -u)

9. On Linux systems, the file /dev/urandom is a constantly generated random stream of characters. Can
you use this file with od to printout a random decimal number?

Tuesday, June 1, 2010

http://www.doc.ic.ac.uk/~wjk/UnixIntro
http://www.doc.ic.ac.uk/~wjk/UnixIntro

3. Change to the home directory of another user directly, using cd ~username.
4. Change back into your home directory.
5. Make subdirectories called work and play.
6. Delete the subdirectory called work.
7. Copy the file /etc/passwd into your home directory.
8. Move it into the subdirectory play.
9. What is the difference between listing the contents of directory play with ls -l and ls -L?
10. What is the output of the command: echo {con,pre}{sent,fer}{s,ed}? Now, from your home

directory, copy /etc/passwd and /etc/group into your home directory in one command given that
you can only type /etc once.

11. Still in your home directory, copy the entire directory play to a directory called work, preserving the
symbolic link.

12. Delete the work directory and its contents with one command. Accept no complaints or queries.
13. Experiment with the options on the ls command. What do the d, i, R and F options do?

William Knottenbelt (2001) http://www.doc.ic.ac.uk/~wjk/UnixIntro

Tuesday, June 1, 2010

http://www.doc.ic.ac.uk/~wjk/UnixIntro
http://www.doc.ic.ac.uk/~wjk/UnixIntro

