
UNIX file system
1. Ordinary files

Ordinary files can contain text, data, or program information. Files cannot contain other files or
directories. Unlike other operating systems, UNIX filenames are not broken into a name part and an
extension part (although extensions are still frequently used as a means to classify files). Instead they can
contain any keyboard character except for '/' and be up to 256 characters long (note however that
characters such as *,?,# and & have special meaning in most shells and should not therefore be used in
filenames). Putting spaces in filenames also makes them difficult to manipulate - rather use the
underscore '_'.

2. Directories
Directories are containers or folders that hold files, and other directories.

3. Devices
To provide applications with easy access to hardware devices, UNIX allows them to be used in much the
same way as ordinary files. There are two types of devices in UNIX - block-oriented devices which
transfer data in blocks (e.g. hard disks) and character-oriented devices that transfer data on a byte-by-
byte basis (e.g. modems and dumb terminals).

4. Links
A link is a pointer to another file. There are two types of links - a hard link to a file is indistinguishable
from the file itself. A soft link (or symbolic link) provides an indirect pointer or shortcut to a file. A soft
link is implemented as a directory file entry containing a pathname.

William Knottenbelt (2001) http://www.doc.ic.ac.uk/~wjk/UnixIntro
Tuesday, June 1, 2010

http://www.doc.ic.ac.uk/~wjk/UnixIntro
http://www.doc.ic.ac.uk/~wjk/UnixIntro

Directories are containers or folders that hold files, and other directories.
3. Devices

To provide applications with easy access to hardware devices, UNIX allows them
to be used in much the same way as ordinary files. There are two types of devices
in UNIX - block-oriented devices which transfer data in blocks (e.g. hard disks)
and character-oriented devices that transfer data on a byte-by-byte basis (e.g.
modems and dumb terminals).

4. Links

A link is a pointer to another file. There are two types of links - a hard link to a
file is indistinguishable from the file itself. A soft link (or symbolic link)
provides an indirect pointer or shortcut to a file. A soft link is implemented as a
directory file entry containing a pathname.

2.3 Typical UNIX Directory Structure

The UNIX filesystem is laid out as a hierarchical tree structure which is anchored at a
special top-level directory known as the root (designated by a slash '/'). Because of the
tree structure, a directory can have many child directories, but only one parent
directory. Fig. 2.1 illustrates this layout.

Fig. 2.1: Part of a typical UNIX filesystem tree

To specify a location in the directory hierarchy, we must specify a path through the

William Knottenbelt (2001) http://www.doc.ic.ac.uk/~wjk/UnixIntro
Tuesday, June 1, 2010

http://www.doc.ic.ac.uk/~wjk/UnixIntro
http://www.doc.ic.ac.uk/~wjk/UnixIntro

/ The "root" directory

/bin Essential low-level system utilities

/usr/bin Higher-level system utilities and application programs

/sbin Superuser system utilities (for performing system administration tasks)

/lib
Program libraries (collections of system calls that can be included in
programs by a compiler) for low-level system utilities

/usr/lib Program libraries for higher-level user programs

/tmp Temporary file storage space (can be used by any user)

/home or /homes
or /Users

User home directories containing personal file space for each user. Each
directory is named after the login of the user.

/etc UNIX system configuration and information files

/dev Hardware devices

/proc
A pseudo-filesystem which is used as an interface to the kernel.Includes a
sub-directory for each active program (or process).

Unix file system

William Knottenbelt (2001) http://www.doc.ic.ac.uk/~wjk/UnixIntro
Tuesday, June 1, 2010

http://www.doc.ic.ac.uk/~wjk/UnixIntro
http://www.doc.ic.ac.uk/~wjk/UnixIntro

Commands that manipulate the file system
This section describes some of the more important directory and file handling
commands.

pwd (print [current] working directory)

pwd displays the full absolute path to the your current location in the filesystem.
So

 $ pwd
 /usr/bin

implies that /usr/bin is the current working directory.

ls (list directory)

ls lists the contents of a directory. If no target directory is given, then the
contents of the current working directory are displayed. So, if the current working
directory is /,

 $ ls
 bin dev home mnt share usr var
 boot etc lib proc sbin tmp vol

Actually, ls doesn't show you all the entries in a directory - files and directories
that begin with a dot (.) are hidden (this includes the directories '.' and '..' which
are always present). The reason for this is that files that begin with a . usually
contain important configuration information and should not be changed under
normal circumstances. If you want to see all files, ls supports the -a option:

 $ ls -a

Even this listing is not that helpful - there are no hints to properties such as the
size, type and ownership of files, just their names. To see more detailed
information, use the -l option (long listing), which can be combined with the -a
option as follows:

 $ ls -a -l
 (or, equivalently,)
 $ ls -al

Each line of the output looks like this:

This section describes some of the more important directory and file handling
commands.

pwd (print [current] working directory)

pwd displays the full absolute path to the your current location in the filesystem.
So

 $ pwd
 /usr/bin

implies that /usr/bin is the current working directory.

ls (list directory)

ls lists the contents of a directory. If no target directory is given, then the
contents of the current working directory are displayed. So, if the current working
directory is /,

 $ ls
 bin dev home mnt share usr var
 boot etc lib proc sbin tmp vol

Actually, ls doesn't show you all the entries in a directory - files and directories
that begin with a dot (.) are hidden (this includes the directories '.' and '..' which
are always present). The reason for this is that files that begin with a . usually
contain important configuration information and should not be changed under
normal circumstances. If you want to see all files, ls supports the -a option:

 $ ls -a

Even this listing is not that helpful - there are no hints to properties such as the
size, type and ownership of files, just their names. To see more detailed
information, use the -l option (long listing), which can be combined with the -a
option as follows:

 $ ls -a -l
 (or, equivalently,)
 $ ls -al

Each line of the output looks like this:

William Knottenbelt (2001) http://www.doc.ic.ac.uk/~wjk/UnixIntro

Tuesday, June 1, 2010

http://www.doc.ic.ac.uk/~wjk/UnixIntro
http://www.doc.ic.ac.uk/~wjk/UnixIntro

ls -a and also ls -a -l or ls -al or ls -la

◦ type is a single character which is either 'd' (directory), '-' (ordinary file), 'l' (symbolic link), 'b' (block-
oriented device) or 'c' (character-oriented device).

◦ permissions is a set of characters describing access rights. There are 9 permission characters, describing
3 access types given to 3 user categories. The three access types are read ('r'), write ('w') and execute
('x'), and the three users categories are the user who owns the file, users in the group that the file
belongs to and other users (the general public). An 'r', 'w' or 'x' character means the corresponding
permission is present; a '-' means it is absent.

◦ links refers to the number of filesystem links pointing to the file/directory (see the discussion on hard/
soft links in the next section).

◦ owner is usually the user who created the file or directory.
◦ group denotes a collection of users who are allowed to access the file according to the group access

rights specified in the permissions field.
◦ size is the length of a file, or the number of bytes used by the operating system to store the list of files in

a directory.
◦ date is the date when the file or directory was last modified (written to). The -u option display the time

when the file was last accessed (read).
◦ name is the name of the file or directory.

William Knottenbelt (2001) http://www.doc.ic.ac.uk/~wjk/UnixIntro

Tuesday, June 1, 2010

http://www.doc.ic.ac.uk/~wjk/UnixIntro
http://www.doc.ic.ac.uk/~wjk/UnixIntro

• man (man ls)

• info (info ls)

• cd path

• mkdir directory

• rmdir directory

• cp source-file(s) destination

• cp -rd source-directories destination-directory

• mv source destination

• rm target-file(s) [try using the -i option]

• cat target-file(s)

• more target-file(s) or less target-file(s)

William Knottenbelt (2001) http://www.doc.ic.ac.uk/~wjk/UnixIntro

Tuesday, June 1, 2010

http://www.doc.ic.ac.uk/~wjk/UnixIntro
http://www.doc.ic.ac.uk/~wjk/UnixIntro

2.5 Making Hard and Soft (Symbolic) Links
Direct (hard) and indirect (soft or symbolic) links from one file or directory to another can be created using
the ln command.
 $ ln filename linkname

creates another directory entry for filename called linkname (i.e. linkname is a hard link). Both directory
entries appear identical (and both now have a link count of 2). If either filename or linkname is modified, the
change will be reflected in the other file (since they are in fact just two different directory entries pointing to
the same file).

 $ ln -s filename linkname

creates a shortcut called linkname (i.e. linkname is a soft link). The shortcut appears as an entry with a special
type ('l'):

 $ ln -s hello.txt bye.txt
 $ ls -l bye.txt
 lrwxrwxrwx 1 will finance 13 bye.txt -> hello.txt
 $

The link count of the source file remains unaffected. Notice that the permission bits on a symbolic link are not
used (always appearing as rwxrwxrwx). Instead the permissions on the link are determined by the
permissions on the target (hello.txt in this case).

[I suggest to minimize the use of hard links]

Making soft and hard links to files

William Knottenbelt (2001) http://www.doc.ic.ac.uk/~wjk/UnixIntro

Tuesday, June 1, 2010

http://www.doc.ic.ac.uk/~wjk/UnixIntro
http://www.doc.ic.ac.uk/~wjk/UnixIntro

Specifying multiple files
Multiple filenames can be specified using special pattern-matching characters. The rules are:

• '?' matches any single character in that position in the filename.
• '*' matches zero or more characters in the filename. A '*' on its own will match all files. '*.*' matches all

files with containing a '.'.
• Characters enclosed in square brackets ('[' and ']') will match any filename that has one of those

characters in that position.
• A list of comma separated strings enclosed in curly braces ("{" and "}") will be expanded as a Cartesian

product with the surrounding characters.
For example:
1. ??? matches all three-character filenames.
2. ?ell? matches any five-character filenames with 'ell' in the middle.
3. he* matches any filename beginning with 'he'.
4. [m-z]*[a-l] matches any filename that begins with a letter from 'm' to 'z' and ends in a letter from 'a' to

'l'.
5. {/usr,}{/bin,/lib}/file expands to /usr/bin/file /usr/lib/file /bin/file and /lib/

file.
Note that the UNIX shell performs these expansions (including any filename matching) on a command's
arguments before the command is executed.

William Knottenbelt (2001) http://www.doc.ic.ac.uk/~wjk/UnixIntro

Tuesday, June 1, 2010

http://www.doc.ic.ac.uk/~wjk/UnixIntro
http://www.doc.ic.ac.uk/~wjk/UnixIntro

Exercises

1. Try the following command sequence:
◦ cd
◦ pwd
◦ ls -al
◦ cd .
◦ pwd (where did that get you?)
◦ cd ..
◦ pwd
◦ ls -al
◦ cd ..
◦ pwd
◦ ls -al
◦ cd ..
◦ pwd (what happens now)
◦ cd /etc
◦ ls -al | more
◦ cat passwd
◦ cd -
◦ pwd

2. Continue to explore the filesystem tree using cd, ls, pwd and cat. Look in /bin, /usr/bin, /sbin, /
tmp and /boot. What do you see?

William Knottenbelt (2001) http://www.doc.ic.ac.uk/~wjk/UnixIntro

Tuesday, June 1, 2010

http://www.doc.ic.ac.uk/~wjk/UnixIntro
http://www.doc.ic.ac.uk/~wjk/UnixIntro

3. Change to the home directory of another user directly, using cd ~username.
4. Change back into your home directory.
5. Make subdirectories called work and play.
6. Delete the subdirectory called work.
7. Copy the file /etc/passwd into your home directory.
8. Move it into the subdirectory play.
9. What is the difference between listing the contents of directory play with ls -l and ls -L?
10. What is the output of the command: echo {con,pre}{sent,fer}{s,ed}? Now, from your home

directory, copy /etc/passwd and /etc/group into your home directory in one command given that
you can only type /etc once.

11. Still in your home directory, copy the entire directory play to a directory called work, preserving the
symbolic link.

12. Delete the work directory and its contents with one command. Accept no complaints or queries.
13. Experiment with the options on the ls command. What do the d, i, R and F options do?

William Knottenbelt (2001) http://www.doc.ic.ac.uk/~wjk/UnixIntro

Tuesday, June 1, 2010

http://www.doc.ic.ac.uk/~wjk/UnixIntro
http://www.doc.ic.ac.uk/~wjk/UnixIntro

