
Discrete Optimization

Optimization problems can be divided naturally into two categories:

• those with continuous variables

• those with discrete variables (often called combinatorial optimization)

For continuous problems you have a function f(x1, x2, . . . , xn) which you want
to maximize or minimize. The function may be differentiable or not. There may
be constraints or not.

For discrete optimization problems we are looking for the maximum or minimum
from a finite set which often consists of integers; in fact, in some cases the
solution can only take on the value zero or one.

The algorithms for solving these two types of problems are typically vastly differ-
ent.

Some Standard Techniques for Solving Discrete Optimization Problems

• Linear Programming

• Quadratic Programming

• Nonlinear Programming

• Dynamic Programming

• Simulated Annealing

• Branch and Bound

• Genetic Algorithms

• etc.

We will concentrate on problems where the function to maximize is linear in its
unknowns and any constraints are also linear.

Some Examples of Discrete Optimization Problems

Knapsack Problem Suppose a hitchhiker has to fill up his knapsack by selecting
from among various possible objects those which will give him maximum comfort.
We have n objects each of which has a measure of some quantity such as comfort
or value assigned, pi and a weight wi. Clearly we want to choose objects such that
the sum of their weights are less than the given capacity but which maximizes
the comfort. If we denote variables xi, i = 1, n as

xi =

{
1 if object i is selected

0 otherwise

then we want to maximize

p1x1 + p2x2 + · · · + pnxn

subject to the constraint

w1x1 + w2x2 + · · · + wnxn ≤ W

where W is the maximum carrying weight of the knapsack.

There are many applications of the Knapsack Problem. For example, suppose we
only have an amount W of file storage to store the results of n calculations. Each
calculation requires an amount of space wi and

∑n
i=1 wi > W . Each calculation

has a cost pi to recompute the results. We want to choose the calculations
to store so that we minimize the amount of time to recompute the results, or
equivalently maximize the amount of compute time for the stored files.

Traveling Salesman Problem A company is sending one of its salesmen to
clients in certain major cities. The distance between the cities is given. We want
to find the path starting and ending in a particular location which minimizes the
distance traveled while visiting each city only once.

Scheduling Problem Suppose we have a schedule of flights for a particular
aircraft type and we want to design weekly schedules for the crews. Each day a
crew must be assigned a duty period consisting of a set of one or more linking
flights satisfying numerous constraints such as a limit on the total flying time,
minimum rest requirements between flights, etc. Then the daily schedules must
be put together to satisfy further constraints such as overnight rests, returning
to starting point, etc. The objective is to minimize the amount paid to crews

which is a function of flying time, length of duty periods, guaranteed number of
hours, etc.

Assignment Problem Suppose there are n people available to do n jobs. For
each person there is a cost associated to do a particular job. Assign each person
to a job in such a way that the total cost is minimized.

Linear Programming

For a discrete linear optimization problem we are typically given a finite set S
and a vector c⃗ where we want to find x⃗ to

maximize (or minimize) c1x1 + c2x2 + · · · + cnxn

subject to some linear constraints

a11x1 + a12x2 + · · · a1nxn ≤ (≥, =)b1

a21x1 + a22x2 + · · · a2nxn ≤ (≥, =)b2

...

am1x1 + am2x2 + · · · amnxn ≤ (≥, =)bm

To see the types of problem we can solve via linear programming, we will first
look at some examples.

I. The Diet Problem Suppose a “starving” graduate student makes a list of his
favorite foods and wants to determine a diet which would give him the necessary
energy, protein and calcium per day while minimizing his costs. His favorite foods
are:

Food Serving size energy protein calcium price per serving
oatmeal 28 g 110 4 2 $0.75
chicken 100 g 205 32 12 $ 2.40
eggs 2 large 160 13 54 $0.50
whole milk 8 oz 160 8 285 $0.50
cherry pie 170 g 420 4 22 $2.50
pork & beans 260 g 260 14 80 $0.25

His minimum daily requirements are energy - 2000 kcal, protein - 55 g, calcium
- 800 mg. The problem is that the cheapest way to eat would be to consume
10 servings of pork & beans but not many people can maintain an exclusive diet
of pork & beans for too long. So the student realizes that he has to put some
constraints on the problem because he isn’t willing to eat 10 servings of one item
in a day. Here are the maximum number of servings of each he is willing to eat.

Oatmeal ≤ 4 servings

Chicken ≤ 3 servings

Eggs≤ 2 servings

Whole milk ≤ 8 servings

Cherry pie ≤ 2 servings

Pork & beans ≤ 2 servings

Even with only 6 foods and the given constraints on the maximum number of
servings per day, there are a lot of combinations that are possible. Let’s formulate
the problem mathematically.

Let the number of servings of each food be designated by x1, x2, . . . , x6 in the
order given in the table. Then our constraints on the number of servings of each
are

0 ≤ x1 ≤ 4, 0 ≤ x2 ≤ 3, etc.

Our requirement that the servings yield at least 2000 calories gives

110x1 + 205x2 + 160x3 + 160x4 + 420x5 + 260x6 ≥ 2000;

our requirement for the daily protein is

4x1 + 32x2 + 13x3 + 8x4 + 4x5 + 14x6 ≥ 55;

and the requirement for calcium is

2x1 + 12x2 + 54x3 + 285x4 + 22x5 + 80x6 ≥ 800

Finally our last condition is that we want to minimize the cost of our daily food
so our complete problem is given as

minimize
[
.75x1 + 2.4x2 + .5x3 + .5x4 + 2.5x5 + .25x6

]

subject to the constraints

110x1 + 205x2 + 160x3 + 160x4 + 420x5 + 260x6 ≥ 2000

4x1 + 32x2 + 13x3 + 8x4 + 4x5 + 14x6 ≥ 55

2x1 + 12x2 + 54x3 + 285x4 + 22x5 + 80x6 ≥ 800

0 ≤ x1 ≤ 4, 0 ≤ x2 ≤ 3, 0 ≤ x3 ≤ 2,

0 ≤ x4 ≤ 8, 0 ≤ x5 ≤ 2, 0 ≤ x6 ≤ 2

So we have a linear function of our integer unknowns x1, x2, . . . , x6 which we
want to minimize and we have 9 linear inequality constraints.

This is an example of a Linear Programming problem.

II. The Transportation Problem A manufacturer has two plants, one located in
Salt Lake City and another in Denver. There are three distributing warehouses,
one in Los Angeles, one in Chicago and the third in New York City. The Salt
Lake City plant can supply 120 tons of the product per week whereas Denver can
supply 140 tons per week. The LA warehouse needs 100 tons weekly to meet
demands, the Chicago warehouse needs 60 tons weekly and the NYC warehouse
needs 80 tons weekly. There are shipping costs associated with transporting the
product from the plant to the distributing warehouses; this is indicated below in
cost per ton of the product

Los Angeles Chicago NYC
from Salt Lake City $5 $7 $9
from Denver $6 $7 $10

To formulate this mathematically we let P1 denote the Salt Lake City plant and
P2 the Denver plant; let Wi, i = 1, 3 denote the warehouses in LA, Chicago,
and NYC, respectively. Let xij denote the tonnage shipped from plant Pi to
warehouse Wj and cij the cost per ton in shipping from plant Pi to warehouse
Wj.

For the Salt Lake City plant

x11 + x12 + x13 ≤ 120

while for the Denver plant

x21 + x22 + x23 ≤ 140

The demand for the LA warehouse requires

x11 + x21 ≥ 100

and for Chicago we have

x12 + x22 ≥ 60

and for NYC we have

x13 + x23 ≥ 80

Our goal is to minimize the cost of shipping the product while meeting the
demands of each warehouse. We summarize the problem as

minimize
[2∑

i=1

3∑

j=1

cijxij

]

where c11 = 5, c12 = 7, c13 = 9, c21 = 6, c22 = 7 , c23 = 10

subject to the constraints

x11 + x12 + x13 ≤ 120 x21 + x22 + x23 ≤ 140 (supplies)

x11 + x21 ≥ 100 x12 + x22 ≥ 60 x13 + x23 ≥ 80 (demands)

xij ≥ 0, i = 1, 2; j = 1, 2, 3

Once again we have to minimize a linear function of our integer variables subject
to a set of linear constraints.

III. Blending Problem A manufacturer of artificial sweetener blends 14 kg sac-
charin and 18 kg dextrose to prepare two new products: sweet and lo-sugar.
Each kg of sweet contains 0.4 kg dextrose and 0.2 kg saccharin while each kg
of lo-sugar contains 0.3 kg of dextrose and 0.4 kg of saccharin. If the profit
on each kg of sweet is 20 cents and on each kg of lo-sugar is 30 cents, how
many kilograms of each product should be made to maximize the profit.

Let x1 denote the number of kg of sweet and x2 the number of lo-sugar

produced. Our problem can be posed mathematically as

maximize
[
.2x1 + .3x2

]

0.4x1 + 0.3x2 ≤ 18 (dextrose supply constraint)

0.2x1 + 0.4x2 ≤ 14 (saccharin supply constraint)

xi ≥ 0, i = 1, 2

In general, a Linear Programming (LP) problem is to maximize (or minimize)
a linear function of our unknowns subject to linear equality and/or inequality
constraints.

General Linear Programming Problem: Find values x1, x2, . . . , xn

which

maximize or minimize z = c1x1 + c2x2 + · · · + cnxn

subject to the conditions

a11x1 + a12x2 + · · · + a1nxn ≤ (≥)(=)b1

a21x1 + a22x2 + · · · + a2nxn ≤ (≥)(=)b2

...

am1x1 + am2x2 + · · · + amnxn ≤ (≥)(=)bm

The function z is called the objective function and the restric-
tions/conditions are called constraints.

To standardize our discussion, we will say that a Linear Programming problem
is in standard form if we are maximizing z, our variables xi ≥ 0 and all other
constraints are ≤. Note that different authors may choose the standard form as
minimizing z.

If our problem is to minimize a function, we simply maximize the negative of it;
that is, if we seek x⃗ to

minimize z = c1x1 + c2x2 + · · · + cnxn

then we change it to

maximize z = −(c1x1 + c2x2 + · · · + cnxn)

If we have a constraint that is ≥ we simply multiply the inequality by -1 to change
the sign of the inequality.

Standard Form of Linear Programming Problem: Find values
x1, x2, . . . , xn which

maximize z = c1x1 + c2x2 + · · · + cnxn

subject to the conditions

a11x1 + a12x2 + · · · + a1nxn ≤ b1

a21x1 + a22x2 + · · · + a2nxn ≤ b2

...

am1x1 + am2x2 + · · · + amnxn ≤ bm

xj ≥ 0, j = 1, 2, . . . , n

We can also rewrite our standard form in terms of matrices and vectors. We have
the following.

Matrix Form of Linear Programming Problem: Given c⃗, find a vector
x⃗ = (x1, x2, . . . , xn)T which

maximizes z = c⃗T x⃗

subject to the constraints
⎛

⎜⎜⎝

a11 a12 · · · a1n

a21 a22 · · · a2n
...

am1 am2 · · · amn

⎞

⎟⎟⎠

⎛

⎜⎜⎝

x1

x2
...

xn

⎞

⎟⎟⎠ ≤

⎛

⎜⎜⎝

b1

b2
...

bm

⎞

⎟⎟⎠

xj ≥ 0, j = 1, 2, . . . , n

Any vector x⃗ satisfying our constraints is called a feasible solution to our LP
program.

The specific vector x⃗ which is a feasible solution and which maximizes the ob-

jective function z is called an optimal solution.

Example Consider the LP problem of finding x⃗ ∈ IR2 such that x⃗ maximizes

z =
(
120 100

) (
x
y

)

subject to
(

2 2
5 3

)(
x
y

)
≤

(
8
15

)

(
x
y

)
≥

(
0
0

)

Determine if (1, 2)T and (2, 2)T are feasible solutions.

All we need to do is to verify that they satisfy the constraints. Clearly each
component is non-negative and

(
2 2
5 3

) (
1
2

)
=

(
6
8

)
≤

(
8
15

)

11

so (1, 2)T is a feasible solution. Also
(

2 2
5 3

)(
2
2

)
=

(
8
16

)
̸≤

(
8
15

)

So (2, 1)T is not a feasible solution.

For a linear programming problem with two unknowns we can solve it by geometri-
cal reasoning. Before we look at a method to solve a general Linear Programming
problem we look at this special case so that we can gain some intuition about
the problems.

2

Linear Programming Problem with Two Unknowns

Suppose we want to maximize a function of two unknowns subject to a set of
constraints. Then this problem can be solved by geometrical reasoning. To do
this, we graph the constraints (as equalities) and see that the constraints define
a polyhedron and all feasible solutions lie inside the polyhedron.

Example Sketch the region of feasible solutions for the LP problem in standard
form:

max (x + 2y)

subject to

x ≤ 1, y ≤ 1, x + y ≤ 1.5, x ≥ 0, y ≥ 0

and use graphical reasoning to find the optimal solution.

The first thing we do is to plot the lines x = 1, y = 1, x + y = 1.5 and x = 0,
y = 0.

The region containing all feasible solutions is the polyhedron bounded by our
lines. Here z is a linear function of x and y; its maximum must occur on the

boundary of the polyhedron.

Along y = 0, z increases from 0 to 1 at (1,0).

Along x = 1, z increases from 1 to 2 at (1,0.5).

Along x = 0, z increases from 0 at the origin to 2 at (0,1).

Along y = 1, z increases from 2 at (0,1) to 2.5 at (0.5,1).

Along the line x + y = 1.5, z increases from 2 at (1,.5) to 2.5 at (.5,1).

We see that the maximum occurs at the point (0.5, 1) which satisfies all con-
straints.

Example Consider the LP problem

maximize z = 2x + 3y

subject to the constraints

3x + y ≤ 6; x + y ≤ 4, x + 2y ≤ 6

x, y ≥ 0

We plot the three equations and indicate the polyhedron containing the feasible
solutions.

Graphically we see that the vertices of the polyhedron are (0,0), (2,0), (1.2,2.4),
and (0,3).

If we evaluate z along the edge of the polyhedron y = 0 we see that at (0,0)
z = 0; at (2,0) z = 4 so z increases from 0 to 4 along this edge.

Along x = 0, we see that z increases from 0 at the origin to z = 9 at (0,3).

Along the line 3x + y = 6, z increases from 4 at (2,0) to 9.6 at (1.2,2.4).

Along the line x + 2y = 6, z increases from 9 at (0,3) to 9.6 at (1.2,2.4).

Thus the optimal solution is at (1.2, 2.4) with a value z = 9.6.

Example Sketch the region of feasible solutions for the LP problem in standard
form:

maximize (2x + 5y)

subject to − 2x− 3y ≤ −12, 3x + 4y ≤ 12

x ≥ 0, y ≥ 0

and use graphical reasoning to find the optimal solution.

In this case the constraints are conflicting because we require −2x− 3y ≤ −12
or equivalently 2x + 3y ≥ 12 but we also require 3x + 4y ≤ 12.

Thus there is no feasible solution to this LP problem. This is illustrated in the
figure.

Not all linear programming problems have a solution!

Can we have an unbounded feasible set?

You can easily imagine a scenario where we are trying to maximize some quantity
and the constraints yield an unbounded set. In this case there is no optimal
solution. For example,

maximize (x + 4y)

subject to x− y ≤ 1, 2x− y ≤ 8, x1, x2 ≥ 0

What if we changed the previous problem to minimizing x + 4y instead of maxi-
mizing it? We have

minimize (x + 4y)

subject to x− y ≤ 1, 2x− y ≤ 8, x1, x2 ≥ 0

We still have an unbounded feasible region but we want to minimize x + 4y so

we take the only vertex of the region x = 3, y = 2 and the minimum value is
3+8=11. Any other value in the unbounded region produces a larger value.

If we have a solution is it guaranteed to be unique?

Consider the example

maximize (3x1 + 2x2)

subject to x1 + x2 ≤ 5, 3x1 + 2x2 ≤ 12, x1, x2 ≥ 0

We want to maximize (3x1 +2x2) but from the constraint we see that the largest
it can be is 12.

Is there more than one point which satisfies this? Yes.

Consider points on the line 3x1 + 2x2 = 12 which satisfy x1 + x2 ≤ 5. For
example, (2,3) and (5/2,9/4); both points lie on the line 3x1 + 2x2 = 12 and
sum to ≤ 5; thus both are optimal solutions to this LP problem.

Thus we see that even if we have a bounded feasible solution set, we may not

have a unique optimal solution.

Exercise For each of the following problems, transform it into a LP problem
and determine the solution graphically.

1. Michigan Polar Products makes downhill and crosscountry skis. A pair of
downhill skis requires 2 man-hours for cutting, 1 man-hour for shaping and 3
man-hours for finishing while a pair of crosscountry skis requires 2 man-hours
for cutting, 2 man-hours for shaping and 1 man-hour for finishing. Each day the
company has available 140 man-hours for cutting, 120 man-hours for shaping
and 150 man-hours for finishing. How many pairs of each type of ski should the
company manufacture each day in order to maximize profit if a pair of downhill
skis yields a profit of $10 and a pair of cross-country skis yields a profit of $8?

2. A dietitian wants to design a breakfast menu for certain hospital patients.
The menu is to include two items A and B. Suppose that each ounce of A provides
2 units of vitamin C and 2 units of iron and each ounce of B provides 1 unit of
vitamin C and 2 units of iron. Suppose the cost of A is 4 cents per ounce and
the cost of B is 3 cents per ounce. If the breakfast menu must provide at least
8 units of vitamin C and 10 units of iron, how many ounces of each item should
be provided in order to meet the iron and vitamin C requirements for the least
cost? What will this breakfast cost?

Last time we saw that for a LP problem with two unknowns which has a bounded
feasible set, then we can find an optimal solution graphically. Now we want to
determine an approach for solving a general LP problem.

We have seen that for a LP problem where the constraints form a bounded
feasible set, then the constraint equations form the boundary of a polyhedron
which contains all feasible solutions to our problem.

Theorem. The set of all feasible solutions to a linear programming
problem is a convex polyhedron.

Recall that a set S is convex if for any pair of points x, y ∈ S then the line
connecting x and y is in S. So, for example, a circle, a square, a triangle, a
polygon are all convex sets. A star-shaped region or an L-shaped region are not
convex.

In the examples where we had a bounded feasible set of solutions, the optimal

solution was at a vertex of the polyhedron, i.e., at an extreme point.

What we claim is that is that this is always true.

For any bounded feasible linear programming problem there exists an
optimal solution which corresponds to an extreme point (i.e., a vertex)
of the polyhedron containing all feasible solutions.

This result is the basis of the standard algorithm for LP (the Simplex Method)
because it moves from one vertex of the polyhedron to another while making sure
the objective function never decreases (assuming we are maximizing a quantity).

Example Let’s return to our first example of finding x⃗ ∈ IR2 such that x⃗
maximizes

z =
(
120 100

) (
x
y

)

subject to
(

2 2
5 3

)(
x
y

)
≤

(
8
15

)

(
x
y

)
≥

(
0
0

)

The region is sketched below.

We see that the vertices of the polyhedron are

(0, 0), (0, 4), (3, 0), (
3

2
,
5

2
)

so all we have to do is evaluate z at each point.

We have at (0,0) z = 0.

At (0,4) z = 400.

At (3,0) z = 360.

At (3
2,

5
2), z = 180 + 250 = 430.

So the optimal solution is at (3
2,

5
2) which is the result we found graphically.

Slack Variables

We now want to begin to look at an approach for solving a general LP problem,
i.e., one with more than two unknowns.

In general, inequality constraints are much more difficult to handle than equality
constraints. So what we want to do is determine a way to convert our problem
with inequality constraints to one with equality constraints. Of course this comes
with a price; in our case, it is the introduction of additional variables.

Example Let’s return to our first example again where we seek x⃗ ∈ IR2 such
that x⃗ maximizes

z =
(
120 100

) (
x
y

)

subject to

2x + 2y ≤ 8, 5x + 3y ≤ 15, x, y ≥ 0

To convert these two constraints to equality constraints we introduce two new

variables u ≥ 0 and v ≥ 0 where

2x + 2y + u = 8 5x + 3y + v = 15.

The new variables u, v are called slack variables because they “take up the slack”
between the left and right sides of the constraint.

In matrix form our new problem becomes to find x⃗ = (x, y, u, v) such that x⃗
maximizes

z =
(
120 100 0 0

)

⎛

⎜⎜⎝

x
y
u
v

⎞

⎟⎟⎠

subject to

(
2 2 1 0
5 3 0 1

)
⎛

⎜⎜
⎝

x
y
u
v

⎞

⎟⎟
⎠ =

(
8
15

)
,

⎛

⎜⎜
⎝

x
y
u
v

⎞

⎟⎟
⎠ ≥

⎛

⎜⎜
⎝

0
0
0
0

⎞

⎟⎟
⎠

Now if (x, y, u, v) is a solution to this new LP problem then (x, y) satisfies the
original LP problem. To see this, we have u = 8−2x−2y and v = 15−5x−3y.
Because we assume u ≥ 0 this says 8− 2x− 2y ≥ 0 which implies 2x + 2y ≤ 8;
similarly v ≥ 0 implies 5x + 3y ≤ 15. Clearly these are our original constraints.

Conversely, if (x, y) satisfies the original LP problem then 2x + 2y ≤ 8 and
5x + 3y ≤ 15. If u, v are defined as u = 8 − 2x − 2y and v = 15 − 5x − 3y,
then u ≥ 0 because 8− 2x− 2y ≥ 0; similarly v ≥ 0 because 15− 5x− 3y ≥ 0.
Thus (x, y, u, v) satisfies the new LP problem with equality constraints.

If our original constraint was, e.g, 2x + 2y ≥ 8 then we want 2x + 2y − 8 ≥ 0
and u ≥ 0 so we would take u = 2x + 2y − 8 or equivalently 2x + 2y − u = 8.

If we have m inequality constraints (other than the ones which say the variables
are non-negative) then we simply add m slack variables, one for each constraint.
In general, our problem with m constraints becomes

Linear Programming Problem with Slack Variables : Assume we
originally had n variables and m inequality constraints. Af-
ter introducing slack variables xn+1, . . . , xn+m we seek values
x1, x2, . . . , xn, xn+1, . . . , xn+m to

maximize z = c1x1 + c2x2 + · · · + cnxn

subject to the conditions

a11x1 + a12x2 + · · · + a1nxn + xn+1 = b1

a21x1 + a22x2 + · · · + a2nxn + xn+2 = b2

...

am1x1 + am2x2 + · · · + amnxn + xn+m = bm

xj ≥ 0, j = 1, 2, . . . , n + m

Solving the LP with slack variables is equivalent to solving it in Standard form.

Now we need to figure our how to solve a LP problem in this form, i.e., with
equality constraints (except for the constraints that the components of x⃗ are
non-negative).

First, we rewrite our LP problem using matrix notation.

Matrix form of LP Problem Using Slack Variables Let c⃗ =
(c1, c2, · · · , cn, 0, 0, . . . , 0) ∈ IRs where s = n + m. Then we seek
x⃗ ∈ IRs to

(†) maximize z = c⃗T x⃗

subject to the equality constraints Ax⃗ = b⃗ and x⃗ ≥ 0⃗

Here A is the m× s matrix with m ≤ s given by

A =

⎛

⎜⎜⎝

a11 a12 · · · a1n 1 0 · · · · · · 0
a21 a22 · · · a2n 0 1 0 · · · 0
...

am1 am2 · · · amn 0 · · · · · · 0 1

⎞

⎟⎟⎠

We assume that the rank of A is m.

Because we assume that the rank of A is m we know that A has m linearly
independent columns and m linearly independent rows. If we choose m linearly
independent columns of A then they form a basis for IRm.

Now the constraints (other than x⃗ ≥ 0) form a linear system of equations where
A is an m × s (with s = m + n) matrix; because s > m this is an under-
determined system, i.e., we have more unknowns than equations and thus expect
multiple solutions. Because we have assumed that A has rank m the constraint
equations are not redundant.

Let S denote the set of solutions to this under-determined linear system where
xi ≥ 0 for all i.

Example Consider the under-determined system Ax⃗ = b⃗ where

A =

⎛

⎝
1 0 1 0 1 0
0 −1 −1 0 −1 −1
1 2 2 1 1 1

⎞

⎠

A has rank 3 and so its null space has dimension 3 (because 6-3=3). To solve
this in the usual way, we have 3 degrees of freedom, i.e., we can set 3 of the
components of x⃗ and use the system to solve for the remaining 3. Of course
there are an infinite number of choices for these variables.

If we solved this system by row-reducing it, we would be lead to the equivalent
system

⎛

⎝
1 0 1 0 1 0
0 −1 −1 0 −1 −1
1 2 2 1 1 1

⎞

⎠→

⎛

⎝
1 0 1 0 1 0
0 1 1 0 −1 1
0 2 1 1 0 1

⎞

⎠→

⎛

⎝
1 0 1 0 1 0
0 −1 −1 0 −1 −1
0 0 1 −1 2 1

⎞

⎠

which says that we can set the last three variables arbitrarily and we can get the 3
linearly independent solutions to our problem. However, this requires more work
than we are willing to do because we don’t need the most general solution.

Because we want xi ≥ 0 for all i, let’s pick 3 of the components of x⃗, set them
to zero and see the result.

If we set x2 = x3 = x5 = 0 then we get the system

A =

⎛

⎝
1 0 1 0 1 0
0 −1 −1 0 −1 −1
1 2 2 1 1 1

⎞

⎠

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

x1

0
0
x4

0
x5

x6

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

= b⃗

or equivalently we have the reduced system
⎛

⎝
1 0 0
0 0 −1
1 1 1

⎞

⎠

⎛

⎝
x1

x4

x6

⎞

⎠ =

⎛

⎝
b1

b2

b3

⎞

⎠

Because the coefficient matrix here is invertible, we have the solution x1 = b1,
x6 = −b3 and x1 + x4 + x6 = b3 implies x4 = b3− b1 + b3 and a solution to the
under-determined system is

x⃗ = (b1, 0, 0, b3 − b1 + b3, 0,−b3)
T

Does this always work? If we choose x1 = x3 = x5 = 0 then we get the reduced

system

⎛

⎝
0 0 0
−1 0 −1

2 1 1

⎞

⎠

⎛

⎝
x2

x4

x6

⎞

⎠ =

⎛

⎝
b1

b2

b3

⎞

⎠

but clearly in this system the coefficient matrix is singular so we don’t have a
unique solution; that is, we aren’t free to choose any 3 components arbitrarily.
This is because in our original matrix the 6th column plus the 4th column yields
the 2nd column so they are linearly dependent.

Definition: A basic solution to the under-determined system Ax⃗ = b⃗ where A
is m× s with rank m is a solution where we have set s−m components of the
solution to 0. The basic variables in the basic solution are those which are not
set to 0.

Definition: A basic feasible solution to our LP problem with slack variables is a
basic solution to Ax⃗ = b⃗ which is also a feasible solution to our LP problem.

Theorem For our LP problem (†) we have that every basic feasible so-
lution is an extreme point and every extreme point is a basic feasible
solution. Moreover there are a finite number of basic feasible solutions
to (†).

So this theorem tells us that all we need to do is find every basic feasible solution
to (†) and then evaluate z there and choose the largest.

Example Let’s return to our first example again where we seek x⃗ ∈ IR2 such
that x⃗ maximizes

z =
(
120 100

)(
x1

x2

)

subject to

2x1 + 2x2 ≤ 8, 5x1 + 3x2 ≤ 15

x1, x2 ≥ 0

We converted this using slack variables x3, x4 to get the under-determined system

(
2 2 1 0
5 3 0 1

)
⎛

⎜⎜⎝

x1

x2

x3

x4

⎞

⎟⎟⎠ =

(
8
15

)
,

⎛

⎜⎜⎝

x1

x2

x3

x4

⎞

⎟⎟⎠ ≥

⎛

⎜⎜⎝

0
0
0
0

⎞

⎟⎟⎠

Because x⃗ ∈ IR4 we have 6 possible combinations for setting two components
to zero

x1 = x2 = 0, x1 = x3 = 0, x1 = x4 = 0,

x2 = x3 = 0, x2 = x4 = 0, x3 = x4 = 0

For each combination we need to determine if it is a basic feasible solution or
not; if it is, then we evaluate z there and choose our maximum. Here we show
the details for 2 choices and the rest are summarized in the table below.

For x1 = x2 = 0 we have the system
(

1 0
0 1

)(
x3

x4

)
=

(
8
15

)
=⇒ x3 = 8, x4 = 15

Because the system is solvable and x3, x4 ≥ 0 this is a feasible solution so we
evaluate z there to get 0.

For x2 = x3 = 0 we have the system

(
2 0
5 1

)(
x1

x4

)
=

(
8
15

)
=⇒ x1 = 4, x4 = 15− 5(4) = −5 < 0

Therefore this is NOT a feasible solution because x4 violates the non-negativity
constraint so we discard it.

For each basic solution we have

x1 x2 x3 x4 feasible or not z
0 0 8 15 feasible 0
0 4 0 3 feasible 400
0 5 -2 0 not feasible -
4 0 0 -5 not feasible -
3 0 2 0 feasible 360

1.5 2.5 0 0 feasible 430

As we can see from the table, we get the maximum of z = 430 at (1.5, 2.5)
which is the result we found by geometrical arguments.

In the next example, we take a linear programming problem from its initial for-
mulation to its solution (by hand). In addition, we compare our result with
the solution we can obtain via graphical arguments because there are only 2
unknowns.

Example Consider the LP problem

maximize z = 2x1 + 3x2

subject to the constraints

3x1 + x2 ≤ 6; x1 + x2 ≤ 4, x1 + 2x2 ≤ 6

x1, x2 ≥ 0

We have 3 constraints so we need to add a slack variable for each. Our inequality
constraints become

3x1 + x2 + x3 = 6; x1 + x2 + x4 = 4, x1 + 2x2 + x5 = 6

xi ≥ 0, 1, 2, . . . , 6

and our under-determined system has the coefficient matrix which is 3× 5 with
a rank of 3. Therefore it has a two dimensional nullspace.

A =

⎛

⎝
3 1 1 0 0
1 1 0 1 0
1 2 0 0 1

⎞

⎠

This means we can set 2 variables to zero. We have 5 variables so we have 10
possibilities.

If we set x1 = x2 = 0 then we have the system

⎛

⎝
1 0 0
0 1 0
0 0 1

⎞

⎠

⎛

⎝
x3

x4

x5

⎞

⎠ =

⎛

⎝
6
4
6

⎞

⎠ =⇒ x3 = 6, x4 = 4, x6 = 6

so it is a basic feasible solution.

If we set x1 = x3 = 0 then we have the system

⎛

⎝
1 0 0
1 1 0
2 0 1

⎞

⎠

⎛

⎝
x2

x4

x5

⎞

⎠ =

⎛

⎝
6
4
6

⎞

⎠ =⇒ x2 = 6, x4 = −2, x6 = −6

so it is NOT a basic feasible solution since the constraints xi ≥ 0 are not satisfied.

Continuing in this fashion we get the results given in the table. There are four
feasible solutions and we see that the optimal one occurs at (1.2, 2.4).

x1 x2 x3 x4 x5 feasible or not z
0 0 6 4 6 feasible 0
0 6 0 -2 -6 not feasible -
0 4 2 0 -2 not feasible -
0 3 3 1 0 feasible 9
2 0 0 2 4 feasible 4
4 0 -6 0 2 not feasible -
6 0 -6 2 0 not feasible -
1 3 0 0 -1 not feasible -

1.2 2.4 0 0.4 0 feasible 9.6
2 2 -2 0 0 not feasible

Graphically we see that the vertices are (0,0), (2,0), (1.2,2.4), and (0,3) which
are the 4 feasible basic solutions that we found above.

Implementing this approach to the Linear Programming Problem

We have seen one approach for solving the LP problem after we have converted
it to a problem with equality constraints by introducing slack variables.

This may not be the most efficient way to solve a LP problem, but implementation
is straightforward so we look at it here. However, it will be effective when we
have a relatively small number of constraints.

The steps in our approach are as follows:

1. To initialize, we input our m × s constraint matrix A, the right hand side
vector b⃗ and the vector c⃗ such that we want to maximize z = c⃗T x⃗. Initialize
z.

2. Determine the number of variables we set to zero.

3. Loop over all possible combinations of variables to set to zero.

• Remove columns of A corresponding to the variables we set to zero to
form an m×m matrix Ã.

• Solve Ãy⃗ = b⃗ for the variables which are not set to zero.

• Determine if the solution is feasible or not.

• If it is feasible, evaluate z there. If this value of z is larger than current
value, save solution and z value.

So if we use the backslash command to solve the linear system, all we really need
to write is a routine which forms the reduced matrix Ã from A.

function a_reduced = delcols(a,i)
% Delete specified columns of the matrix a.
% Particular columns to delete are in integer array i where
% it is assumed these are in order
%
[m,s]=size(a);

loc=1;

first = 0;
for j = 1:s

if j == i(loc)

loc=loc+1;
if loc > size(i)

if j < s
a_reduced = [a_reduced, a(:,j+1:s)]

end
break

end
else

if (first == 0)
a_reduced = [a(:,j)]
first = 1;

else

a_reduced = [a_reduced, a(:,j)]

end

end

end

end

However, there is a function in Matlab which makes this process a lot easier.

Suppose we want to eliminate columns 3, 7, 9 from a 5 × 10 matrix. Then we
set

i=[3, 7,9];

j=[1:10];

k=setdiff(j,i)

Then the result is

1 2 4 5 6 8 10

Thus all we have to set is

a reduced = a(:,k);

to get our reduced matrix. It’s a lot simpler when you know the right command!

Let’s return to one of our initial “real world” problems and solve it using the
approach of finding all feasible solutions. Recall that the problem was summarized
as follows:

minimize
[2∑

i=1

3∑

j=1

cijxij

]

where c11 = 5, c12 = 7, c13 = 9, c21 = 6, c22 = 7 , c23 = 10

subject to the constraints

x11 + x12 + x13 ≤ 120 x21 + x22 + x23 ≤ 140 (supplies)

x11 + x21 ≥ 100 x12 + x22 ≥ 60 x13 + x23 ≥ 80 (demands)

xij ≥ 0, i = 1, 2; j = 1, 2, 3

If we wrote our code to compute all possible feasible solutions then it really

doesn’t matter whether we are maximizing or minimizing z. The first thing we
do is introduce slack variables so that we have equality constraints.

We renumber our unknowns as x1, x2, · · · , x6 and introduce 5 slack variables
x7, · · · , x11.

We want to minimize

z = 5x1 + 7x2 + 9x3 + 6x4 + 7x5 + 10x6

subject to the constraints

x1 + x2 + x3 + x7 = 120 x4 + x5 + x6 + x8 = 140 (supplies)

x1+x4−x9 = 100 x2+x4−x10 = 60 x3+x6−x11 = 80 (demands)

xi ≥ 0, i = 1, 2, . . . , 11

Note that for each solution we obtain we have to solve a 5×5 system of equations.

Notice that for the inequalities which were originally ≥, we subtract the slack
variable. This is because, e.g.,

x9 = x1 + x4 − 100, x9 ≥ 0 =⇒ x1 + x4 ≥ 100

Now for our code to calculate all basic feasible solutions we need to input A, b⃗
and c⃗. We have

A =

⎛

⎜⎜⎜⎜
⎝

1 1 1 0 0 0 1 0 0 0 0
0 0 0 1 1 1 0 1 0 0 0
1 0 0 1 0 0 0 0 −1 0 0
0 1 0 0 1 0 0 0 0 −1 0
0 0 1 0 0 1 0 0 0 0 −1

⎞

⎟⎟⎟⎟
⎠

c⃗ = (5, 7, 9, 6, 7, 10, 0, 0, 0, 0, 0)T b⃗ = (120, 140, 100, 60, 80)T

We present the results in the table below where we only give the feasible solutions,
i.e., where xi ≥ 0 for all i.

x1 x2 x3 x4 x5 x6 Cost
0 60 60 120 0 20 $1880
0 40 80 100 40 0 $1880

100 0 20 0 80 60 $1840
40 0 80 80 60 0 $1820
40 0 80 60 80 0 $1840
40 0 80 80 60 0 $1820

100 20 0 0 60 80 $1860
60 60 0 60 0 80 $1880

100 20 0 0 40 80 $1720

So our conclusion is that

• Salt Lake City (whose maximum supply is 120 tons) should ship 100 tons to
LA, 20 tons to Chicago, and none to NYC

• Denver (whose maximum supply is 140 tons) should ship none to LA, 40
tons to Chicago and 80 tons to NYC

• The transportation costs for this minimum configuration is $1720 .

Exercise For each LP problem, introduce slack variables and change the in-
equality constraints to equality constraints.

1. We want to maximize 4x1 + 12x2 + 8x3 subject to the constraints

3x1 + 2x2 − 6x3 ≤ 20, x1 + 6x2 ≥ 10, xi ≥ 0, i = 1, 2, 3

2. The “diet problem” from Lecture 1

minimize
[
.75x1 + 2.4x2 + .5x3 + .5x4 + 2.5x5 + .25x6

]

subject to the constraints

110x1 + 205x2 + 160x3 + 160x4 + 420x5 + 260x6 ≥ 2000

4x1 + 32x2 + 13x3 + 8x4 + 4x5 + 14x6 ≥ 55

2x1 + 12x2 + 54x3 + 285x4 + 22x5 + 80x6 ≥ 800

0 ≤ x1 ≤ 4, 0 ≤ x2 ≤ 3, 0 ≤ x3 ≤ 2,

0 ≤ x4 ≤ 8, 0 ≤ x5 ≤ 2, 0 ≤ x6 ≤ 2

Implementing this approach to the Linear Programming Problem

We have seen one approach for solving the LP problem after we have converted
it to a problem with equality constraints by introducing slack variables.

This may not be the most efficient way to solve a LP problem, but implementation
is straightforward so we look at it here. However, it will be effective when we
have a relatively small number of constraints.

The steps in our approach are as follows:

1. To initialize, we input our m × s constraint matrix A, the right hand side
vector b⃗ and the vector c⃗ such that we want to maximize z = c⃗T x⃗. Initialize
z.

2. Determine the number of variables we set to zero.

3. Loop over all possible combinations of variables to set to zero.

Friday, March 29, 13

• Remove columns of A corresponding to the variables we set to zero to
form an m×m matrix Ã.

• Solve Ãy⃗ = b⃗ for the variables which are not set to zero.

• Determine if the solution is feasible or not.

• If it is feasible, evaluate z there. If this value of z is larger than current
value, save solution and z value.

So if we use the backslash command to solve the linear system, all we really need
to write is a routine which forms the reduced matrix Ã from A.

function a_reduced = delcols(a,i)
% Delete specified columns of the matrix a.
% Particular columns to delete are in integer array i where
% it is assumed these are in order
%
[m,s]=size(a);

loc=1;

Friday, March 29, 13

BRUTE FORCE Linear programming algorithm

The Simplex Method

Our goal now is to develop an algorithm for solving the LP problem when our
constraints have been converted to equality constraints which does not involve
solving so many linear systems as we did in the last approach.

As we saw in our previous examples, we could solve the LP problem by

(i) finding all basic solutions by solving m×m linear systems;

(ii) discard the ones which are not feasible;

(iii) evaluate the function to maximize at each feasible basic solution and pick
the maximum.

However, for each basic solution we have to solve a linear m ×m system with
a different coefficient matrix each time; this can be expensive if we have many
constraints, i.e., m is large.

What should our strategy be to reduce the amount of work?

• One reduction in work that we would like to accomplish is to only find feasible
solutions because a solution to our linear system which doesn’t satisfy the
constraints (or the matrix is not invertible) is discarded.

• If we determine a new feasible solution and when we evaluate z there, if
it is less than the current maximum, then this is discarded and our work is
wasted. So what we would like to do is to start at a feasible solution and
then move to another feasible solution which has a larger value of z than
the current one.

Of course we also need a way to determine when we have found an optimal
solution.

Let’s look again at our table for one of the previous examples where we only
include the feasible solutions in the table.

x1 x2 x3 x4 feasible or not z
0 0 8 15 feasible 0
0 4 0 3 feasible 400
3 0 2 0 feasible -

1.5 2.5 0 0 feasible 430

The first point has basic variables (i.e., the ones which aren’t 0) x3, x4

The second point has basic variables x2, x4

The third point has basic variables x1, x3

The fourth point has basic variables x1, x2

Note that

• the first and second points have the basic variable x4 in common
• the first and third points have the basic variable x3 in common
• the first and fourth points have none in common
• the second and third points have none in common
• the second and fourth points have the basic variable x2 in common

• the third and fourth points have the basic variable x1 in common

If two basic feasible solutions have a variable in common then we call them
adjacent.

In our example above, all points are adjacent to each other except (i) one and
four and (ii) two and three.

The Simplex Method was developed by George Dantzig in 1947 as a more efficient
approach to solving the LP problem than finding all basic feasible solutions. The
idea is that it starts with a basic feasible solution and then moves to an adjacent
point in such a way that the function to maximize increases.

What do we need to implement the Simplex Method?

(1.) an initial basic feasible solution

(2.) a way to determine an adjacent basic feasible solution for which z is larger
than the value at the current basic feasible solution;

(3.) a way to determine if a given basic feasible solution is an optimal solution;
i.e., to terminate our search.

Determining the Initial Basic Feasible Solution

In general, finding an initial basic feasible solution can be a major difficulty.
However, we will make an assumption which makes it easy.

We assume that each component of b⃗ satisfies bi ≥ 0. If it is not, an alternate
approach must be used.

There are m+n = s components in x⃗; m slack variables (one for each constraint)
plus the n original variables. To get an initial feasible solution we set the original
(nonslack) variables to 0. When we do this our system is reduced to the m×m
system with the coefficient matrix the identity⎛

⎜⎜
⎝

1 0 0 · · · 0
0 1 0 · · · 0

. . .
0 0 · · · 0 1

⎞

⎟⎟
⎠

⎛

⎜⎜
⎝

xn+1

xn+2
...

xn+m

⎞

⎟⎟
⎠ =

⎛

⎜⎜
⎝

b1

b2
...

bm

⎞

⎟⎟
⎠

and thus

x1 = x2 = · · · = xn = 0 xn+1 = b1, xn+2 = b2, · · · xn+m = bm

Because we have assumed that bi ≥ 0 then this is a basic feasible solution.

Example Let’s return to our original example of finding x⃗ ∈ IR2 such that x⃗
maximizes

z =
(
120 100

)(
x1

x2

)

subject to

2x1 + 2x2 ≤ 8, 5x1 + 3x2 ≤ 15, x1, x2 ≥ 0

We converted this using slack variables x3, x4 to get the under-determined system

(
2 2 1 0
5 3 0 1

)
⎛

⎜⎜
⎝

x1

x2

x3

x4

⎞

⎟⎟
⎠ =

(
8
15

)
,

⎛

⎜⎜
⎝

x1

x2

x3

x4

⎞

⎟⎟
⎠ ≥

⎛

⎜⎜
⎝

0
0
0
0

⎞

⎟⎟
⎠

We have that each bi > 0 so our approach works. We set x1 = x2 = 0 and then

x3 = 8 and x4 = 15. Our initial basic feasible solution is

(0, 0, 8, 15)

Often one summarizes the results in a Tableau. To do this we write the objective
as

z − 120x1 − 100x2 = 0

and include it as a variable in the table. We have our initial tableau as

x1 x2 x3 x4 z
x3 2 2 1 0 0 8
x4 5 3 0 1 0 15

-120 -100 0 0 1 0

The variables on the left are the basic variables for the point, i.e., the ones
we have not set to zero so we are solving for them. All rows except the last
represent the constraints so the values under x1 through x4 are just the entries
in our under-determined system with the last column giving the right hand side.
The last row represents the objective z − 120x1 − 100x2.

Notice that the row corresponding to the basic variable x3 has a coefficient +1 in
the x3 column and the other entry in that column is 0; this means that x3 is set
to the right most column which here is 8. In the second row we have the basic
variable x4 with its coefficient as +1, no other nonzero entries in that column
and it is set to 15.

We say that this system is in canonical form with respect to the variables x3, x4

because each basic variable must (i) appear in exactly one equation with a coef-
ficient of +1 and (ii) other entries in that column are 0. Then its value is set to
the entry in the right most column.

The idea is that at each step of the process we will have an updated tableau.

How do we move to an adjacent point so that our function increases?

Let’s look at this in terms of our example. At our initial point (0, 0, 8, 15) we
have that z = 120x1 + 100x2 + 0x3 + 0x4 = 0 so we can increase it if we move
to a point where either x1 or x2 are > 0 because both of our coefficients in the
expression for z are > 0.

In general we increase any of the nonbasic variables which has a positive coeffi-
cient.

So in our example how do we choose whether to increase x1 or x2? There are
different strategies; for example, we could (i) choose the first one with a negative
coefficient (because we wrote z − 120x1 − 100x2 in the table) or (ii) choose
the one with the largest negative coefficient in the objective row.

We will choose the second criteria so that for our example the most negative
coefficient is -120 so we increase x1.

The variable to be increased is called the entering variable because in the next
iteration it will become a basic variable, i.e., enter the set of basic variables.

We always have to satisfy the linear system Ax⃗ = b⃗ so if we increase one variable
then we must decrease another one. So in our case if we increase x1, keep x2 at
0 then we have

2x1 + 2x2 + x3 = 8 =⇒ x3 = 8− 2x1

5x1 + 3x2 + x4 = 15 =⇒ x4 = 15− 5x1

Thus an increase in x1 decreases both x3 and x4.

Are we free to increase x1 as much as we want?

Of course the answer is no because we require x3, x4 ≥ 0. So we really need

x3 = 8− 2x1 ≥ 0 =⇒ x1 ≤ 4 and x4 = 15− 5x1 ≥ 0 =⇒ x1 ≤ 3

Thus we can’t increase x1 by more than 3 in our example. If x1 = 3 then x3 = 2
and x4 = 0. Thus our next basic feasible solution is

(3, 0, 2, 0)

and it is adjacent to the original one (0, 0, 8, 15) because it still has one basic
variable (x3) in common. When we evaluate z we see that it is now 360 which
is a great improvement over 0.

Note that the fact that we can increase x1 by no more than 3 can be seen from
the tableau. For the row corresponding to x3 we see that the coefficient of x1 is
2 and the right hand side term is 8 so we have 8/2=4; for the row corresponding

to x4 we see that the coefficient of x1 is 5 and the right hand side term is 15 so
we have 15/5=3.

The fourth variable x4 is now zero so it is no longer a basic variable; we call it a
departing variable because it has departed the set of basic variables. The column
of the entering variable is called the pivotal column and the row labeled with the
departing variable is called the pivotal row. The entry in the pivotal column and
pivotal row is the pivot.

So this procedure seemed clear with our small example. We determined the most
negative entry in the objective row and took the corresponding variable to be our
new basic variable, i.e., our entering variable. Because we want to increase z,
we then used the constraints to determine the largest value that the new basic
variable could have; this resulted in one of the current basic variables being set
to zero; i.e., it became the departing variable. Once we had the largest value for
our new variable, we were able to compute the value of the other basic variable,
in our case x3. We then had our new feasible solution which was constructed
to have a larger value of z then the previous adjacent solution. In summary, we
moved from one vertex of the polyhedron containing all feasible solutions to an

adjacent node which was guaranteed to have a larger z value.

Now we want to systematize this procedure. To do this, let’s think of the tableau
as containing our under-determined system and we want to perform elementary
row operations (as we do in Gauss elimination) to make the entry in the row and
column of the entering variable become +1 and to make sure all other entries in
that column have been zeroed out.

Let’s look at our new tableau corresponding to this iteration. We want the
coefficient of our entering basic variable x1 to be +1 because it is our new basic
variable and we want to make sure the previous basic variable x3 also maintains
a +1 in the correct entry.

The departing variable will be x4 so we use this row for the entering variable
x1. We have 5x1 + 3x2 + x4 = 15 so the elementary row operation to make the
coefficient of x1 to be +1 is to multiply this row by 1/5. We have x1+

3
5x2+

1
5x4 =

3.

Now we need to make the other entry in that column to be 0 so we need to take

a multiple of the new row and add to the first. We multiply our new second row
by -2 and add to the first to get 4

5x2 +x3−
2
5x4 = 2. The coefficient of the basic

variable x3 will remain +1 because the entry in that column in the other row is
0.

Thus we have that x3 = 2 and x1 = 3 with x2 = x4 = 0. If we evaluate z at
this point we get 360.

Finally we update the objective row. What we are essentially doing is introducing
a 0 into the column corresponding to the entering variable x1. To this end we
multiple our new second row by 120 and add to the objective row to get

0 ·x1 +
[
120(

3

5
)−100

]
x2 +0 ·x3 +

120

5
x4 = 0 ·x1−28x2 +0 ·x3 +24x4 = 3∗120

Thus the tableau for the second step is as follows.

x1 x2 x3 x4 z

x3 0 4
5 1 −2

5 0 2

x1 1 3
5 0 1

5 0 3

0 -28 0 24 1 360

The process that we used to get from the first tableau is called pivoting.

Return again to our initial tableau where we mark the departing variable with
“←” and the entering variable with ”↓”. We locate and mark the entry at the
intersection of the pivotal row and pivotal column, i.e., the position where we
have an entering and departing variable.

↓
x1 x2 x3 x4 z

x3 2 2 1 0 0 8
← x4 5 3 0 1 0 15

-120 -100 0 0 1 0

Now our pivotal element is 5 so divide that row by 5. This is the new row in our
second tableau. Now we have to make our pivotal column all 0’s except for the
1 in the pivotal element. So in our case we multiply by -2 and add to the first to
get our new first row and then multiply by 120 and add to the last.

In general, the steps to go from one tableau to the next are:

• decide on the entering variable based on some criteria such as the one with
the most negative entry in the objective row;

• locate the departing variable to give the pivotal row; locate the entering
variable to give the pivot column; then mark the pivotal element;

• if the pivotal element is k, divide row by k

• add multiples of the pivotal row (which now has 1 in the pivot) to zero out
other entries in that column

Now let’s take our second tableau and do this to get the third.

First the entering variable is x2 because it has the most negative entry in the
objective row. We flag the departing variable which is x3.

↓
x1 x2 x3 x4 z

← x3 0 4
5 1 −2

5 0 2

x1 1 3
5 0 1

5 0 3

0 -28 0 24 1 360

To get a +1 in the pivot element we multiply the first row by 5/4 to get

↓
x1 x2 x3 x4 z

← x3 0 1 5
4 −

1
2 0 5

2

x1 1 3
5 0 1

5 0 3

0 -28 0 24 1 360

Now we use that new row to zero out the other entries in the column. We modify
the second row and the objective row to get our third tableau

x1 x2 x3 x4 z

x2 0 1 5
4 −

1
2 0 5

2

x1 1 0 −3
4

1
2 0 3

2

0 0 35 10 1 420

You will recognize this solution (3
2,

5
2, 0, 0) as the optimal solution that we found

before.

How do we know if we have found an optimal solution?

If the objective row of a tableau has zero entries in the columns labeled by
the basic variables and no negative entries in the columns labeled by nonbasic
variables, then the solution represented by the tableau is optimal.

We now take an example of a LP problem through all the steps of the Simplex
Method.

Example Use the Simplex Method to find an optimal solution to the following
LP problem.

maximize 2x1 + 3x2 + 3x3

subject to

3x1 + 2x2 ≤ 60 − x1 + x2 + 4x3 ≤ 10 2x1 − 2x2 + 5x3 ≤ 50

x1, x2, x3 ≤ 0

Our first step is to add slack variables so we will have equality constraints. We
have 3 constraints so we need to add 3 additional variables x4, x5, x6. The
conditions become

3x1 + 2x2 + x4 = 60 − x1 + x2 + 4x3 + x5 = 10 2x1− 2x2 + 5x3 + x6 = 50

In matrix form we seek x⃗ = (x1, x2, . . . , x6) which

maximizes (2, 3, 3, 0, 0, 0)T x⃗

subject to

Ax⃗ = b⃗ x⃗ ≥ 0⃗

where

A =

⎛

⎝
3 2 0 1 0 0
−1 1 4 0 1 0

2 −2 5 0 0 1

⎞

⎠ b⃗ =

⎛

⎝
60
10
50

⎞

⎠

Because bi > 0 for i = 1, 2, 3 then we can start with the initial feasible solution
where we set x1 = x2 = x3 = 0. We write our objective as z−2x1−3x2−3x3 =
0. Our initial tableau is the following

x1 x2 x3 x4 x5 x6 z

x4 3 2 0 1 0 0 0 60

x5 -1 1 4 0 1 0 0 10

x6 2 -2 5 0 0 1 0 50

-2 -3 -3 0 0 0 1 0

So our initial feasible solution is (0, 0, 0, 60, 10, 50) and z evaluated there is zero.

Now we decide which is the entering basic variable. The entry that is most
negative is either x2 or x3; both are -3. We choose x2 since it occurs first in the
table.

Now if x2 is the entering variable then we need to determine which variable x4,
x5 or x6 is the departing variable. Once we determine this, then we have the
pivot element and we can proceed to make that element’s entry +1 and zero out
the other entries in the column.

Now we want to make x2 as large as possible so this dictates the departing
variable. We take x5 as the departing variable because if x1 = x3 = 0 then
x4 = 60 − 2x2 ≥ 0 =⇒ x2 ≤ 30; x5 = 10 − x2 ≥ 0 =⇒ x2 ≤ 10 and
x6 = 50 + 2x2 ≥ 0. So the largest x2 can be is 10. This can be seen from
the table without performing these calculations where we take as the departing
variable the one corresponding to the row which has the smallest positive ratio
of the right hand side and the coefficient of x2 in that column.

Our pivot element is in row and column 2. This entry is already +1 so all we
need to do is zero out the (1,2) and (3,2) entries. We multiple the second row
by -2 and add to the first; then we multiply by +2 and add to the third. The
objective row is modified by multiplying row 2 by 3 and adding. We have the
next tableau as follows.

x1 x2 x3 x4 x5 x6 z

x4 5 0 -8 1 -2 0 0 40

x2 -1 1 4 0 1 0 0 10

x6 0 0 13 0 2 1 0 70

-5 0 9 0 3 0 1 30

Our new feasible solution is (0, 10, 0, 40, 0, 70) and the value of z there is 30.

This is not an optimal solution because we still have a negative coefficient in our
objective row. The coefficient of x1 is negative in the objective row (the only
one) so it is our new entering basic variable.

So do we take x4 or x6 as the departing variable now? We take x4 because
40/5=8 for the x4 row but for the x6 row the entry in the x1 column is 0.

Our pivot element is the (1,1) entry which is 5 so we divide that row by 5. Now
we make the (2,1) entry 0 by add the new first row with the second. The entry
in the (3,1) position is already 0 so we don’t have to do anything. The objective
row is modified by multiplying the new first row by 5 and adding.

x1 x2 x3 x4 x5 x6 z

x1 1 0 -8
5

1
5 -2

5 0 0 8

x2 0 1 12
5

1
5

3
5 0 0 18

x6 0 0 13 0 2 1 0 70

0 0 1 1 1 0 1 70

As we can see from the tableau we have reached an optimal solution because all
coefficients in the objective row are non-negative.

We can see that an optimal solution to the original problem is at x⃗ = (8, 18, 0)

whose z value is 70.

We now look at an example where the objective function if unbounded.

Example

maximize 2x2 + x3

subject to

x1 + x2 − 2x3 ≤ 7 − 3x1 + x2 + 2x3 ≤ 3, xi ≥ 0

We add our slack variables x4, x5 to get the equality constraints

x1 + x2 − 2x3 + x4 = 7, −3x1 + x2 + 2x3 + x5 = 3, xi ≥ 0, i = 1, . . . , 5

Because bi ≥ 0 we can begin with the basic feasible solution (0, 0, 0, 7, 3) with a
z value of 0.

In the following we give the sequence of tableaus indicating the pivot element in
red.

x1 x2 x3 x4 x5 z

x4 1 1 -2 1 0 0 7

x5 -3 1 2 0 1 0 3

0 -2 -1 0 0 1 0

x4 4 0 -4 1 -1 0 4

x2 -3 1 2 0 1 0 3

-6 0 3 0 2 0 6

x1 1 0 -1 1
4 -1

4 0 1

x2 0 1 -1 3
4

1
4 0 6

0 0 -3 3
2

1
2 1 12

Now we still have a negative coefficient in the objective function for x3 so for
the next step we would typically take this for the entering variable. However,
if we try to determine the departing variable we see that the objective function
is unbounded below because x2 = 6 + x3 ≥ 0 and x1 = 1 + x3 ≥ 0 puts
no restriction on x3. This is reflected in the fact that the third column has all
negative entries.

Will the Simplex Method always find an optimal solution if we have a bounded
feasible set?

The answer is “no”. There are some pathological examples where the method
cycles back to the same basic solution which is suboptimal. This can be fixed by
making

Bland’s Rule. The Simplex Method will not cycle if we choose the
entering and departing variables by the smallest subscript rule.

Exercise Manually go through the steps of the Simplex Method for the following
LP problem. Write out the tableau at each step and mark the pivot element.
Remember that we solved this problem graphically and got the optimal solution
(0.5,1) with a value of 2.5.

Maximize x1 + 2x2

subject to the constraints

x1 + x2 ≤ 1.5, x1 ≤ 1, x2 ≤ 1, x1, x2 ≥ 0

Quadratic Programming

A Quadratic Programming problem is a specialized optimization problem where
the unknown appears quadratically in the object function but the constraints are
linear.

A general Quadratic Programming problem is given a vector c⃗ and a symmetric
matrix Q, find a vector x⃗ which

maximizes z =
1

2
x⃗TQx⃗ + c⃗T x⃗

subject to the constraints of the form

Ax⃗ ≤ b⃗

and/or

Bx⃗ = d⃗

Note that if Q is the zero matrix then the problem reduces to our Linear Pro-

gramming problem.

There are specialized techniques for solving this type of problem but we don’t
have time to go into them.

Dynamic Programming

We now look at a technique called Dynamic Programming which can be used to
solve some discrete linear optimization problems such as the Knapsack Problem
or Traveling Salesman Problem . Basically we break our problem into smaller
subproblems to solve and then use these to solve the original problem.

The general idea behind Dynamic Programming is to iteratively find the optimal
solution to a small part of the entire problem. Using the previous solution, then
enlarge the problem slightly and find the new optimum solution. We continue
enlarging until we have solved the entire problem. Then we trace back to find
the optimal solution.

Dynamic Programming Solution to the Coin Changing Problem

To try and understand how Dynamic Programming works we first look at a simple
problem which we have encountered before.

We consider the Coin Changing Problem where we want to make change for n
cents using coins of denominations d1, d2, . . . , dk.

We first look at some properties of the problem which allow us to use Dynamic
Programming .

First assume that we have found the optimal solution to the Coin Changing
problem for n cents (by enumeration or a greedy approach, etc.) which uses, for
example, the coins

d1 d1 d3 d2 d4 d5 d2

Now suppose we split the coins randomly into two stacks

Stack 1 totaling b cents: d1 d1 d3 d2

Stack 2 totaling n− b cents : d4 d5 d2

We claim that Stack 1 must be an optimal way of making change for b cents and
Stack 2 is an optimal way of making change for n− b cents. Why?

To see this assume that there is another way to make change for b cents than
the way given in Stack 1. Then we could replace the coins in Stack 1 with this
choice of coins and we would have a better solution than the original one. But
we assumed the original one was optimal so we have a contradiction.

We say that the Coin Changing Problem exhibits optimal substructure.

The next property that the Coin Changing Problem exhibits is that we can re-
cursively define the value of the optimal solution.

Let C(n) denote the minimum number of coins of denominations di, i = 1, . . . , k
needed to make change for n cents. For example, we know that C(6) = 2,
C(21) = 3, etc using standard coins.

In the optimal solution to making change for n cents there must exist some first
coin di where di ≤ n. Furthermore, we have shown above that the remaining
coins in the optimal solution must themselves be the optimal solution to making
change for n− di cents.

Thus if di is the first coin in the optimal solution then

C(n) = 1 + C(n− di)

that is, the optimal solution is one di coin plus the number C(n − di) of coins
to optimally make change for n− di cents.

However, we don’t know which coin di is the first coin in the optimal solution
to making change for n cents, just that there is one. However, we can check
all k such possibilities where di ≤ n and the value of the optimal solution must
correspond to the minimum value of 1 + C(n− di).

Thus we need a recursion formula which exhibits this as well as works when we
are making change for 0 cents. We have

C(n) =

⎧
⎨

⎩

0 if n = 0

min
i for di ≤ n

[
1 + C(n− di)

]
if n > 0

For a Dynamic Programming approach to this problem, we will compute the value
of the optimal solution in a bottom-up manner. To this end, we will compute
C(p) for 0 ≤ p ≤ n so that C(p) contains the correct minimum number of coins
needed to make change for p cents. We will also let S(p) denote the index of
the first coin in an optimal solution to making change for p cents. After we do
this, then we will demonstrate how to construct the optimal solution from this
information.

Example Suppose we want to make change for 16 cents using quarters (d1),
dimes (d2), nickels (d3) and pennies (d4). From our previous work with a greedy
approach we know that the optimal solution is

0 quarters, 1 dimes, 1 nickel and 1 penny

First we want to compute C(p) for 0 ≤ p ≤ 16 where C(p) contains the correct
minimum number of coins needed to make change for p cents.

We set C(0) = 0. Then for p = 1, 2, . . . , 16 we have the following where we
have given the justification in some cases; the others are analogous.

For p = 1 we have C(1) = 1, S(1) = d4 because d4 is the only choice ≤ 1

For p = 2 we have C(2) = 2, S(2) = d4 because d4 is the only choice ≤ 2

For p = 3 we have C(3) = 3, S(3) = d4 because d4 is the only choice ≤ 3

For p = 4 we have C(4) = 4, S(4) = d4 because d4 is the only choice ≤ 4

For p = 5 we have C(5) = 1, S(5) = d3 because now we have two coins which
are ≤ 5;

d4 ≤ 5 =⇒ 1 + C(5− 1) = 1 + C(4) = 5

and

d3 ≤ 5 =⇒ 1 + C(5− 5) = 1 + C(0) = 1 < 5 so we take d3

For p = 6 we have C(6) = 2, S(6) = d3

For p = 7 we have C(7) = 3, S(7) = d3

For p = 8 we have C(8) = 4, S(8) = d3

For p = 9 we have C(9) = 5, S(9) = d3

For p = 10 we have C(10) = 1, S(10) = d2 because now we have three coins
which are ≤ 10;

d4 ≤ 10 =⇒ 1 + C(9) = 6, d3 ≤ 10 =⇒ 1 + C(5) = 2

and

d2 ≤ 10 =⇒ 1 + C(0) = 1 < 2 < 6 so we take d2

For p = 11 we have C(11) = 2, S(11) = d2

For p = 12 we have C(12) = 3, S(11) = d2

For p = 13 we have C(13) = 4, S(11) = d2

For p = 14 we have C(14) = 5, S(11) = d2

For p = 15 we have C(15) = 2, S(11) = d2

For p = 16 we have C(16) = 3, S(16) = d2

Now we want to see how to construct the optimal solution (i.e., give the list of
coins needed) from our computed information.

Our first coin is S(16) which is d2 a dime.

Now we take the subproblem of finding the optimal number of coins to make
change for n−d2 cents; thus we find S(n−d2) which in our case is S(16−10) =
S(6) = d3 so our second coin is a nickel.

Now we take the next subproblem of making change for n − d2 − d3 cents so
we need S(n − d2 − d3) = S(1) = d4 which is a penny. We are done because
n− d2 − d3 − d4 = 0 so our solution is

0 quarters, 1 dimes, 1 nickel and 1 penny

The above procedure correctly outputs an optimal set of coins for making change
for 16 cents.

How would we implement a code for using Dynamic Programming to calculate
the change problem?

Input: n the cents required to make change for; the k denominations d(i),
i = 1, . . . , k

Output: The minimum number of coins required to make change for n cents
given in C(n) and a list of the coins used

Set C(0) = 0

For p = 1, n

set min ←∞

for i = 1 : 4

if d(i) ≤ p then

if 1 + C(n− d(i)) < min then

min = 1 + C(n− d(i))

coin = i

end if

end if

C(p) =min

S(p) = coin

% print out coins used

while n > 0

Print S(n)

n← n− d(S(n))

Characteristics of a problem that can be solved using Dynamic Programming

• the problem can be divided into stages;

• each stage has one or more states;

• you can make a decision at each stage;

• the decision you make affects the state for the next stage;

• there is a recursive relationship between the value of the decision at the stage
and the previously found optimal solution.

In our Coin Changing Problem the stages are coins added; the states are the
feasible coins which can be added; the decision to be made is which coin to add;
the effect on the next stage is the reduction in the amount of cents you need to
make change for; and finally the recursive relationship is 1 + C(n− d(i)) at the
ith stage.

Example Suppose a corporation is willing to invest $5M into its three plants
in order to increase revenue. Each plant submits up to 3 proposals giving the
cost and expected revenue. Use Dynamic Programming to determine how the

corporation should invest its money to maximize revenue if the proposal infor-
mation is given in the table below. The values in the table are given in millions.
Assume that a proposal is completely funded which implies the amount to each
plant is an integer number (in millions of dollars). Assume further that only 0
or 1 proposal per plant is funded; we have included the first proposal as a no
cost-no return proposal which essentially means that if proposal # 1 is funded
that plant gets no money; this will allow us to handle the case where a plant gets
no funding. Assume that the corporation will invest a total of $5 M.

Plant Cost Revenue Plant Cost Revenue Plant Cost Revenue
Proposal

1 1 0 0 2 0 0 3 0 0
2 1 1 5 2 2 8 3 1 4
3 1 2 6 2 3 9 3 - -
4 1 - - 2 4 12 3 - -

We will let the stages be the allocation to each plant; assume that stage #1 is
the allocation to Plant 1, stage # 2 is the allocation to Plant 2, etc. We set this
ordering arbitrarily.

Each stage is divided into states. A state encompasses the information required
to go from one stage to the next. Let xi, i = 1, 2, 3 denote the number of
millions allocated at stage #i. In this case the states for stages 1, 2, and 3 are

{0, 1, 2, 3, 4, 5} the amount of money spent on Plant # 1

{0, 1, 2, 3, 4, 5} the amount of money spent on Plant # 1 and Plant # 2

{5} the amount of money spent on the three plants

Associated with each state is the revenue which is used to make our decision. At
the third and last stage it is easy to know how much to allocate to Plant # 3
because it is just 5M minus the amount spent on Plants #1 and # 2. However,
for the other two stages we must use the revenue to make a decision.

For the first stage (i.e., determining how much to allocate to Plant # 1 we have
the following possibilities. For example, if the plant is allocated 1M, then only
Proposal #2 can be awarded with a revenue of 5M. If ≥ 2M is allocated than
all that can be done is fund Proposal # 3 for a return of 6M.

Investment Proposal No. Revenue
0M 1 0M
1M 2 5M
2M 3 6M
3M 3 6M
4M 3 6M
5M 3 6M

For the second stage of the computations, we must find the optimal solution for
both Plant # 1 and # 2. Recall that x2 denotes the amount allocated to the
two plants.

The results are presented in the table below but let’s look at how we get the
values for say x2 = 4, i.e., we are allocating a total of 4M to Plants # 1 and #
2.

When Proposal # 1 is funded for Plant # 2 the cost is 0M and the revenue is
0M; then Plant # 1 has 4M so Proposal # 3 is funded for a revenue of 6M so
total revenue is 0M + 6M = 6M for this option.

When Proposal # 2 is funded for Plant # 2 the cost is 2M and the revenue is
8M; then Plant # 1 has 2M so Proposal # 3 is funded for a revenue of 6M so
total revenue is 8M + 6M = 14M for this option.

When Proposal # 3 is funded for Plant # 2 the cost is 3M and the revenue is
9M; then Plant # 1 has 1M so Proposal # 2 is funded for a revenue of 5M so
total revenue is 9M + 5M = 14M for this option.

When Proposal # 4 is funded for Plant #2 the cost is 4M and the revenue is
12M; then Plant # 1 has 0M so Proposal # 1 is funded for a revenue of 0M so
total revenue is 0M + 12M = 12M for this option.

This says that when 4M is allocated to the first two plants the optimal is to fund
Proposal # 3 for Plant # 1 and Proposal # 2 for Plant # 2 OR fund Proposal
2 for Plant # 1 and Proposal # 3 for Plant # 2; both yield a revenue of 14M

We summarize the results for allocations of 0M to 5M for Plants # 1 and # 2
below.

Investment Optimal Proposal Optimal Proposal Total Revenue
Plant # 2 Plant # 1

0M 1 1 0M
1M 1 2 5M
2M 2 1 8M
3M 2 1 13M
4M 2 or 3 3 or 2 14M
5M 4 2 17M

Now at the final stage we know that we can just allocate 5M minus the amount
allocated to Plants 1 and 2. Because Plant # 3 only has 1 proposal at a cost of
1M we need to compare the revenue for the last two cases in the table above.

If we allocate 4M to Plants #1 and # 2 then we have 1M left for Plant #3 for
a total revenue of 14M + 4M = 18M. If we allocate 0M to Plant # 3 and 5M
to the first two plants then the revenue is 17M.

Therefore the maximum revenue is attained when we fund Proposal # 2 for Plant
3 and either of the two configurations in the table above for Plants # 1& 2.

Dynamic programming: Needleman-Wunsch sequence alignment

- A C G T

- -5 -5 -5 -5 -5

A -5 10 -1 -3 -4

C -5 -1 7 -5 -3

G -5 -3 -5 9 0

T -5 -4 -3 0 8

Scoring matrix

4/5/13 8:12 AMNeedleman–Wunsch algorithm - Wikipedia, the free encyclopedia

Page 2 of 4http://en.wikipedia.org/wiki/Needleman–Wunsch_algorithm

To find the alignment with the highest score, a two-dimensional array (or matrix) F is allocated. The entry in row i
and column j is denoted here by . There is one column for each character in sequence A, and one row for each
character in sequence B. Thus, if we are aligning sequences of sizes n and m, the amount of memory used is in

. Hirschberg's algorithm only holds a subset of the array in memory and uses space, but
is otherwise similar to Needleman-Wunsch (and still requires time).

As the algorithm progresses, the will be assigned to be the optimal score for the alignment of the first
 characters in A and the first characters in B. The principle of optimality is then

applied as follows:

Basis:

Recursion, based on the principle of optimality:

The pseudo-code for the algorithm to compute the F matrix therefore looks like this:

for i=0 to length(A)
 F(i,0) ← d*i
for j=0 to length(B)
 F(0,j) ← d*j
for i=1 to length(A)
 for j=1 to length(B)
 {
 Match ← F(i-1,j-1) + S(Ai, Bj)
 Delete ← F(i-1, j) + d
 Insert ← F(i, j-1) + d
 F(i,j) ← max(Match, Insert, Delete)
 }

Once the F matrix is computed, the entry gives the maximum score among all possible alignments. To
compute an alignment that actually gives this score, you start from the bottom right cell, and compare the value
with the three possible sources (Match, Insert, and Delete above) to see which it came from. If Match, then and

 are aligned, if Delete, then is aligned with a gap, and if Insert, then is aligned with a gap. (In general,
more than one choices may have the same value, leading to alternative optimal alignments.)

AlignmentA ← ""
AlignmentB ← ""
i ← length(A)
j ← length(B)
while (i > 0 or j > 0)
{
 if (i > 0 and j > 0 and F(i,j) == F(i-1,j-1) + S(Ai, Bj))

Construction of the Table (d=gap penalty)

 C G A G A C G T!
 A 0 -5 -10 -15 -20 -25 -30 -35!
 G -5 9 4 -1 -6 -11 -16 -21!
 A -10 4 19 14 9 4 -1 -6!
 C -15 -1 14 14 13 16 11 6!
 T -20 -6 9 14 10 11 16 20!
 A -25 -11 4 9 24 19 14 15!
 G -30 -16 -1 13 19 19 28 23!
 T -35 -21 -6 8 14 16 23 37!
 T -40 -26 -11 3 9 11 18 32!
 A -45 -31 -16 -2 13 8 13 27!
 C -50 -36 -21 -7 8 20 15 22!

Sequence 1 = CGAGACGT!
Sequence 2 = AGACTAGTTAC

4/5/13 8:12 AMNeedleman–Wunsch algorithm - Wikipedia, the free encyclopedia

Page 2 of 4http://en.wikipedia.org/wiki/Needleman–Wunsch_algorithm

To find the alignment with the highest score, a two-dimensional array (or matrix) F is allocated. The entry in row i
and column j is denoted here by . There is one column for each character in sequence A, and one row for each
character in sequence B. Thus, if we are aligning sequences of sizes n and m, the amount of memory used is in

. Hirschberg's algorithm only holds a subset of the array in memory and uses space, but
is otherwise similar to Needleman-Wunsch (and still requires time).

As the algorithm progresses, the will be assigned to be the optimal score for the alignment of the first
 characters in A and the first characters in B. The principle of optimality is then

applied as follows:

Basis:

Recursion, based on the principle of optimality:

The pseudo-code for the algorithm to compute the F matrix therefore looks like this:

for i=0 to length(A)
 F(i,0) ← d*i
for j=0 to length(B)
 F(0,j) ← d*j
for i=1 to length(A)
 for j=1 to length(B)
 {
 Match ← F(i-1,j-1) + S(Ai, Bj)
 Delete ← F(i-1, j) + d
 Insert ← F(i, j-1) + d
 F(i,j) ← max(Match, Insert, Delete)
 }

Once the F matrix is computed, the entry gives the maximum score among all possible alignments. To
compute an alignment that actually gives this score, you start from the bottom right cell, and compare the value
with the three possible sources (Match, Insert, and Delete above) to see which it came from. If Match, then and

 are aligned, if Delete, then is aligned with a gap, and if Insert, then is aligned with a gap. (In general,
more than one choices may have the same value, leading to alternative optimal alignments.)

AlignmentA ← ""
AlignmentB ← ""
i ← length(A)
j ← length(B)
while (i > 0 or j > 0)
{
 if (i > 0 and j > 0 and F(i,j) == F(i-1,j-1) + S(Ai, Bj))

4/5/13 8:12 AMNeedleman–Wunsch algorithm - Wikipedia, the free encyclopedia

Page 3 of 4http://en.wikipedia.org/wiki/Needleman–Wunsch_algorithm

 {
 AlignmentA ← Ai + AlignmentA
 AlignmentB ← Bj + AlignmentB
 i ← i - 1
 j ← j - 1
 }
 else if (i > 0 and F(i,j) == F(i-1,j) + d)
 {
 AlignmentA ← Ai + AlignmentA
 AlignmentB ← "-" + AlignmentB
 i ← i - 1
 }
 else (j > 0 and F(i,j) == F(i,j-1) + d)
 {
 AlignmentA ← "-" + AlignmentA
 AlignmentB ← Bj + AlignmentB
 j ← j - 1
 }
}

Historical notes
Needleman and Wunsch describe their algorithm explicitly for the case when the alignment is penalized solely by
the matches and mismatches, and gaps have no penalty (d=0). The original publication[1] from 1970 suggests the
recursion .

The corresponding dynamic programming algorithm takes cubic time. The paper also points out that the recursion
can accommodate arbitrary gap penalization formulas:

A penalty factor, a number subtracted for every gap made, may be assessed as a barrier to allowing the
gap. The penalty factor could be a function of the size and/or direction of the gap. [page 444]

A better dynamic programming algorithm with quadratic running time for the same problem (no gap penalty) was
first introduced[2] by David Sankoff in 1972. Similar quadratic-time algorithms were discovered independently by
T. K. Vintsyuk[3] in 1968 for speech processing ("time warping"), and by Robert A. Wagner and Michael J.
Fischer[4] in 1974 for string matching.

Needleman and Wunsch formulated their problem in terms of maximizing similarity. Another possibility is to
minimize the edit distance between sequences, introduced by Vladimir Levenshtein. Peter H. Sellers showed[5] in
1974 that the two problems are equivalent.

In modern terminology, "Needleman-Wunsch" refers to a global alignment algorithm that takes quadratic time for a
linear or affine gap penalty.

See also
Smith-Waterman algorithm
BLAST
Sequence mining

Backtracking

 - C G A G A C G T!
 - 0 -5 -10 -15 -20 -25 -30 -35 -40!
 A -5 -1 -6 0 -5 -10 -15 -20 -25!
 G -10 -6 8 3 9 4 -1 -6 -11!
 A -15 -11 3 18 13 19 14 9 4!
 C -20 -8 -2 13 13 14 26 21 16!
 T -25 -13 -7 8 13 9 21 26 30!
 A -30 -18 -12 3 8 23 18 21 25!
 G -35 -23 -9 -2 12 18 18 27 22!
 T -40 -28 -14 -7 7 13 15 22 36!
 T -45 -33 -19 -12 2 8 10 17 31!
 A -50 -38 -24 -9 -3 12 7 12 26!
 C -55 -43 -29 -14 -8 7 19 14 21!

AGACTA-GTTAC!
CGA-GACG-T--

backtracking: (9 12) (9 11) (9 10) (8 9) (8 8) (7 7) (6 7) (5 6) (4 5) (4 4) (3 3) (2 2)

Simulated Annealing

Simulated Annealing is a technique for finding a global extremum which has its
basis in the physics of materials. It can be viewed as a generalization of Monte
Carlo.

The term “annealing” is used in metallurgy. If a solid material is heated with
sufficiently high temperatures past its melting point and then cooled down to a
solid state, the structural properties of the cooled solid depend on the rate of
cooling. Slow cooling leads to strong, large crystals while fast cooling results in
imperfections.

At the end of the liquid to solid transition the crystalline structure has the lowest
energy. The metal “finds” this state if the temperature is lowered sufficiently
slowly and the original heating was high enough.

At a finite temperature, the system has a small probability to be in a highly

excited state. This prevents it from becoming trapped in a local minimum.

Simulated annealing simulates the slow cooling process to find the global mini-
mum.

In a minimization approach we are tempted to immediately go downhill as far
as we can go. However, this often leads to a local, but not necessarily a global,
minimum. Natures own minimization algorithm is based on quite a different
procedure. The so-called Boltzmann probability distribution,

prob(E) = eE/kT

expresses the idea that a system in thermal equilibrium at temperature T has
its energy probabilistically distributed among all different energy states E. Even
at low temperature, there is a chance, albeit very small, of a system being in
a high energy state. Therefore, there is a corresponding chance for the system
to get out of a local energy minimum in favor of finding a better, more global,
one. The quantity k (Boltzmanns constant) is a constant of nature that relates
temperature to energy. In other words, the system sometimes goes uphill as well
as downhill; but the lower the temperature, the less likely is any significant uphill
excursion.

So our goal is to describe an algorithm which emulates this natural process.

General steps:

Step 1: Initialize Start with a random initial placement. Initialize a very high
“temperature”.

Step 2: Move – Perturb the placement through a defined move.

Step 3: Calculate score – calculate the change in the score due to the move
made.

Step 4: Choose – Depending on the change in score, accept or reject the move.
The probability of acceptance depending on the current “temperature”.

Step 5: Update and repeat – Update the temperature value by lowering the
temperature. Go back to Step 2.

The process is done until a “Freezing Point” is reached.

Whether we accept or reject the move is usually based on the following criteria.

Assume we start at a given state S0 and compute the energy (or cost) E(S0).
Then we choose a slightly different state S1 and compute its energy E(S1).

If E(S1) < E(S0) then we accept the new state S1.

If E(S1) ≥ E(S0) then we compute the transition probability

P = e(E(S0)−E(S1))/T

Next we compute a random number p uniformly distributed in [0,1]. If p < P
switch to the new state S1; otherwise remain in state S0.

We will apply the method to both the Knapsack and the Traveling Salesman
Problem.

Branch and Bound Algorithms

When you studied Graph Theory you talked about the Depth-First Search of a tree
and mentioned the Breadth-First approach. The Branch and Bound approach is
based on a Breadth-First approach using pruning.

The basic idea is to try to make a decision if at a node the remainder of that
portion of the tree can be pruned, i.e., we don’t have to search that part.

Branch and Bound algorithms can be viewed as using a Divide and Conquer
strategy.

We have seen that a Brute Force approach to many combinatorial optimization
problems is to enumerate all possibilities. In the Branch and Bound approach
there is a systematic enumeration of all candidate solutions but large subsets of
fruitless candidates are discarded at once, by using upper and lower estimated
bounds of the quantity being optimized and comparing these to the current best

solution. Thus it is typically an improvement over complete enumeration. Of
course, the method relies on the ability to estimate upper and lower bounds.

Example Consider the integer programming problem to

maximize z = 5x1 + 8x2

subject to

x1 + x2 ≤ 6 5x + 9x2 ≤ 45

where x1, x2 ≥ 0 and are integers.

We could solve this by enumerating all possible solutions in our feasible region,
i.e.,

{(0, 0), (1, 0), · · · (6, 0), (0, 1), (1, 1), · · · , (5, 1), · · · , (0, 4), (1, 4), (0, 5)}

and then evaluating z there. However, we want to use a Branch and Bound

approach which requires less work than complete enumeration.

Now if we don’t require that x1, x2 are integers we can find the solution via Linear
Programming by checking the vertices of the polyhedron which are (0,0), (6,0),
(0,5) and (2.25, 3.75). When we do this, we find that the vertex (2.25,3.75)
gives the maximum value of z which is 41.25. So we know that this is an upper
bound for the solution to our integer problem. We want to use this to break the
problem into two subproblems, i.e., branch.

We will divide the problem into two subproblems using x2 where we take x2 ≤ 3
and x2 ≥ 4. So we have the following integer programming problems:

S1 : maximize z = 5x1 + 8x2

subject to

x1 + x2 ≤ 6 5x + 9x2 ≤ 45

where x1, x2 ≥ 0, x2 ≤ 3 and x1, x2 are integers.

S2 : maximize z = 5x1 + 8x2

subject to

x1 + x2 ≤ 6 5x + 9x2 ≤ 45

where x1, x2 ≥ 0, x2 ≥ 4 and x1, x2 are integers.

This is shown graphically in the next figure. Note that (2.25,3.75) is no longer
in either problem.

So we have started with the problem which allowed all values of x1, x2 (integer
and not) and found that the maximum occurred at (2.25,3.75) with z = 41.25.
We then branched into two child nodes, one for S1 where x2 ≤ 3 and for S2

where x2 ≥ 4. Now for S1 the LP approach has us evaluate z at (0, 0), (6,0),

(0,3) and (3,3) and we find the maximum value at (3,3) where z = 39. Now
(3,3) satisfies the integer constraint and is the optimal solution so there is no
need to further divide S1 so we simply prune the tree at this point. This is the
best integer solution stored so far so it becomes our lower bound.

Now for S2 the maximum is not where x1, x2 are integers so we have to subdivide
this problem further. We don’t have an integer solution from S2 so we don’t
update our current value of z = 39.

Now we subdivide S2 into two problems S3 and S4. We use x1 where we have
the problems

S3 : maximize z = 5x1 + 8x2

subject to

x1 + x2 ≤ 6 5x + 9x2 ≤ 45

where x1, x2 ≥ 0, x1 ≤ 1 and x1, x2 are integers.

S4 : maximize z = 5x1 + 8x2

subject to

x1 + x2 ≤ 6 5x + 9x2 ≤ 45

where x1, x2 ≥ 0, x1 ≥ 2 and x1, x2 are integers.

For S3 we have the maximum occurs at (1,4.44) where z = 40.55 which is larger

than our stored best integer solution of 39 so we can’t dismiss the remainder of
this tree.

Now for S4 we see that there are actually no integer values in this problem so
the subproblem is not feasible.

Lastly we must subdivide problem S3 into two problems S5 and S6. We choose
x2 and break into the two problems

S5 : maximize z = 5x1 + 8x2

subject to

x1 + x2 ≤ 6 5x + 9x2 ≤ 45

where x1, x2 ≥ 0, x2 ≤ 4 and x1, x2 are integers.

S6 : maximize z = 5x1 + 8x2

subject to

x1 + x2 ≤ 6 5x + 9x2 ≤ 45

where x1, x2 ≥ 0, x2 ≥ 5 and x1, x2 are integers.

For S5 we have the optimal solution is at (1,4) (only feasible points are (0,4) and
(1,4)) so we have a z value of 37 which is less than our stored value so it is not
optimal.

For S6 we have only one point (0,5) and its z value is 40 which is larger than
our stored value so it is optimal.

The Knapsack Problem

The standard example of a Knapsack Problem is to pack a knapsack which can
contain a prescribed weight with objects such that the comfort or value (or some
other attribute) of the objects is maximized.

However, there are other examples of problems which are essentially Knapsack

problems. For example, we could have n projects. We assume the jth project,
has a cost of cj and a value of vj . Each project can either be done or not,
i.e., it is not possible to do only a fraction of a project. There is also a budget
b available to fund the projects. The Knapsack Problem is to choose a subset
of the projects to maximize the sum of the total values while not exceeding the
budget constraint.

These problems can be formulated as a discrete optimization problem. We will
refer to the following problem as the 0/1 Knapsack Problem because the com-
ponents of the unknown x⃗ can only be zero or one.

Let

xi =

{
1 if the object is used

0 if the object is not used

then if each object has a weight wi and a value vi then we want to

maximize
n∑

i=1

xivi

subject to the constraint

n∑

i=1

wixi ≤ b

where b is the weight the knapsack can hold.

Note how this problem compares to a standard LP problem. Here the unknown
x⃗ has components which are binary, i.e., they are either 0 or 1 as opposed to the
LP problem where we assume the components are non-negative.

In addition, we typically only have a single constraint in the Knapsack Problem
compared with the LP problem where we can have a large number of constraints.

Note also that we are restricting the problem so that we only use an item once;
e.g., we can’t pack more than one of the same item. There are several modifica-
tions to this 0/1 Knapsack Problem ; for example:

• Multiple-Choice Knapsack Problem where we have k classes of items Ni and
we must take at least one item from each class.

• Multiple Knapsack Problem where we have n items and m knapsacks with
capacities Wi.

• Fractional Knapsack problem where we relax the restriction that xi ∈ {0, 1}
but instead require 0 ≤ xi ≤ 1 for all i.

Fractional Knapsack Problem

The Fractional Knapsack Problem is illustrated in the following example (Ref-
Computer Programming weblog).

Ted Thief has just broken into Fort Knox! He sees himself in a room with n piles
of gold dust. Because the each pile has a different purity, each pile also has a
different value vi and a different weight wi. Ted has a knapsack that can only
hold W kilograms.

Given n, vi, wi and W calculate which piles Ted should completely put into his
knapsack and which he should put only a fraction of.

We can use a Greedy algorithm to solve the Fractional Knapsack Problem. It
can be described as follows. Here we assume that the sum of all the weights are
≥ the capacity of the knapsack.

Input: n items with weights wi and values vi; capacity W

Output: an optimal solution x⃗ where 0 ≤ xi ≤ 1.

Let Wcur denote the current weight of the knapsack and Vcur the current value
in the knapsack.

Preprocessing step We first sort the items in a non-increasing order based on
vi/wi, i.e.,

v1

w1
≥

v2

w2
≥ · · · ≥

vn

wn

Step 0 Initialize. Set xi = 0, i = 1, . . . , n; set Wcur = 0; set Vcur= 0

for j = 1, 2, . . . , n

Step 1 If wj ≤ W −Wcur

then xj = 1
else set xj = (W −Wcur)/wj

Step 2 Set Wcur = Wcur + wjxj. If Wcur ≥ W terminate

Let’s use the Greedy approach to solve our “thief” problem with

n = 5, w⃗ = (1, 12, 2, 4, 1)T , v⃗ = (2, 4, 2, 10, 1)T , W = 15

Our first step is to sort the items based upon vi/wi. We order the items by

10

4
≥

2

1
≥

2

2
≥

1

1
≥

4

12
so we have the ordered values

w⃗ = (4, 1, 2, 1, 12)T , v⃗ = (10, 2, 2, 1, 4)T

Set Wcur = 0, Vcur = 0

• For j = 1 we have w1 = 4 < 15− 0 so we set x1 = 1 and Wcur = 0 + 4 =
4 < 15

• For j = 2 we have w2 = 1 < 15− 4 so we set x2 = 1 and Wcur = 4 + 1 = 5

• For j = 3 we have w3 = 2 < 15− 5 so we set x3 = 1 and Wcur = 5 + 2 = 7

• For j = 4 we have w4 = 1 < 15− 7 so we set x4 = 1 and Wcur = 7 + 1 = 8

• For j = 5 we have w5 = 12 > 15−8 so we set x5 = (W −Wcur)/12 = 7/12
and Wcur = 8 + (7/12)(12) = 15. We terminate because Wcur = W .

So the thief should take all of the piles except the ones that weighs 12 kg and
he should only take approximately 58% of that one.

Remarks:

1. The Greedy Algorithm fills the knapsack completely because we have as-
sumed that

n∑

i=1

wi ≥ W .

2. If x⃗ is the solution to the Greedy Algorithm and if y is any other feasible
solution then

∑

i

yivi ≤
∑

i

xivi

The Greedy Algorithm described above gives an optimal solution for the
Fractional Knapsack Problem

The 0/1 Knapsack Problem

We now return to the Knapsack Problem where the components of the unknown
x⃗ can only be zero or one. We first look at a Brute Force approach and then
move to a Branch and Bound approach.

Brute Force Approach for the 0/1 Knapsack Problem

One approach to solving a Knapsack problem is the Brute Force approach of
enumerating all possible combinations; it is often called complete enumeration.

Example Use the approach of enumerating all possible solutions to the following
knapsack problem.

minimize z = −10x1 − 7x2 − 3x3 − x4

subject to the constraints

5x1 + 6x2 + 4x3 + 6x4 ≤ 11

and

x1, x2, x3, x4 ∈ {0, 1}

Each of the components of x⃗ can be 0 or 1 so we have a total of 24 = 16 possible
solutions. These are enumerated in the table below. For a shorthand notation
we have indicated, e.g., 0010 to denote x1 = x2 = 0, x3 = 1 and x4 = 0. If the
constraint is not satisfied then these are marked in blue.

x⃗ z constraint x⃗ z constraint
0000 0 0 1000 -10 5
0001 -1 6 1001 -11 11
0010 -3 4 1010 -13 9
0011 -4 10 1011 -14 15
0100 -7 6 1100 -17 11
0101 -8 12 1101 -18 17
0110 -10 10 1110 -20 15
0111 -11 16 1111 -21 21

From the table we can see that there are 9 feasible solutions and the minimum
occurs when x1 = 1, x2 = 1, x3 = x4 = 0.

To visualize how we could write a code to solve this problem we can think of
generating a tree. The root node is the first variable and its two child node
correspond to its values of 1 or 0. Then each of these child nodes have two
choices for x2, etc. In this approach we can view it as a graph and perform a
depth-first search, for example, to visit every node.

For our example the tree is illustrated below.

1

1

1

1 1 1 1 1 1 1

0

00

0

0 0 0 0 0 0 0

0 01 1 1

1111 1110 1101 1100 1011 1010 1001 1000 0111 0110 0101 0100 0011 0010 0001

1

One thing to note is that if you look at the leaves of the tree from the right to
left then if each leaf is viewed as a binary number then the leaf to the left is found
by adding one to the number of the preceding node (using binary addition).

Because we have 2n possibilities, it can get computationally expensive to enu-
merate all possible choices and determine whether each is feasible.

We now want to look at a Branch and Bound algorithm which reduces the
number of leaves that we have to visit so it is an improvement over the Complete
Enumeration approach.

Branch and Bound Approach

When you studied Graph Theory you talked about the Depth-First Search of a tree
and mentioned the Breadth-First approach. The Branch and Bound approach is
based on a Breadth-First approach using pruning.

The basic idea is to try to make a decision if at a node the remainder of that
portion of the tree can be pruned, i.e., we don’t have to search that part.

Suppose we are at the first node and we partition the solution set into subsets
S1 and S2 by branching with respect to the value chosen for x1; assume each
solution in S1 has x1 = 1 and each solution in S2 to have x1 = 0.

Each subset Si, i = 1, 2 is a smaller Knapsack Problem . Now we divide each
subset Si, i = 1, 2 into two subsets based on whether x2 is zero or one.

Suppose that we have an effective method to compute a lower bound for any

feasible solution that has the variables up to the point fixed as either zero or one.
If our lower bound is not smaller (assuming we are maximizing) than our current
best solution that we have found so far, then we do not have to visit any of the
child nodes of the current node. The whole branch of the tree can be pruned
and we expect that we have reduced our search.

Of course, this relies on having an effective method to compute a lower bound
for any feasible solution for which the first k components set as zero or one.

How can we find a lower bound on the outcome of the Knapsack Problem at the
kth step?

We can get an upper bound on the outcome of the knapsack problem at the kth
level by using our Greedy Algorithm for the Fractional Knapsack Problem . We
obtain our lower bound by rounding down the fractional variable, if its exists; if
it does not exist then we set the lower bound to the upper bound.

Example Suppose we have a set of 4 objects which have a weight wi and a
value vi as indicated in the table. Assume the capacity of the knapsack is 16.

i vi wi

1 $30 5
2 $45 3
3 $10 5
4 $45 9

We will construct the state space where

• each node contains the total current value v in the knapsack,

• the total current weight w of the contents of the knapsack

• the maximum potential value that the knapsack can hold.

We will also keep a record of the maximum value of any node (partially or
completely filled knapsack) found thus far.

When we perform the depth-first traversal of the state-space tree, we will deter-
mine that a node is “promising” if its maximum potential value is greater than
this current best value.

Before we start, we sort the items (as in the Greedy approach) by the value of
each item normalized by its weight. We renumber the items as follows:

i vi wi
vi

wi
1 $45 3 $15
2 $30 5 $6
3 $45 9 $5
4 $10 5 $2

We begin by starting with an empty knapsack so its current weight, Wcur, is zero
and its current value Vcur = 0.

Step 1 Find the maximum potential value treating the problem as if it were the
fractional knapsack problem and use the greedy algorithmic solution to that
problem.

Step 2 We place each of the remaining objects, in turn, into the knapsack until
the next selected object is too big to fit into the knapsack.

Step 3 We then use the fractional amount of that object that could be placed

in the knapsack to determine the maximum potential value.

Here we give Wcur, Vcur and indicate the bound found by using our greedy algo-
rithm for the continuous problem. ✬

✫

✩

✪
0 $0

$115
!

!
❅

❅✬

✫

✩

✪
3 $45

$115

✬

✫

✩

✪
$0 $0

$79
!

!
❅

❅✬

✫

✩

✪
8 $75

$115

✬

✫

✩

✪
3 $45

$96
!

!
❅

❅✬

✫

✩

✪
17 $120

$0

✬

✫

✩

✪
8 $75

$85

✬

✫

✩

✪
12 $90

$96

✬

✫

✩

✪
3 $45

$55

✁
✁
✁
✁
✁
✁
✁
✁
✁
✁

❆
❆

❆
❆

❆
❆

❆
❆

❆
❆

✬

✫

✩

✪
17 $100

$0

✬

✫

✩

✪
12 $90

$90

✁
✁
✁
✁

❆
❆

❆
❆

Initially we set Wcur = Vcur = 0 and we compute the lower bound by considering
the fractional knapsack problem. Because our capacity is 16 lbs we can put in
all of items 1 and 2 but only 8/9 of item 3. Thus our initial bound is

$45 + $30 +
8

9

(
$45

)
= $75 + $40 = $115

Next we either add item # 1 or not. When we add it, we have increased the
current weight to Wcur = 3pounds and the current value to Vcur = $45. The
bound is found by adding all of item # 2 and 8/9 of item # 3 so it is still $115.
If we elect not to add item # 1 then Wcur = Vcur = 0 and we compute the lower
bound by using the second and third items (total of 14 pounds) and 2/5 of item
4. Thus the lower bound is

$30 + $45 +
2

5

(
$10

)
= $75 + $4 = $79

Now this is lower than our previous value of $115 so we can’t find a larger value
in this portion of the tree so we prune it and make this a terminal leaf node.

At the next level we either add item # 2 or not. If we add it, then our current
weight becomes 8 pounds and the current value $75. Again the lower bound is

$115. If we don’t add it then the current weight and value remain the same as
the parent node. The lower bound is computed by using items # 1 and 3 (12
pounds) and 4/5 of item # 4 to get

$45 + $45 +
4

5

(
$10

)
= $90 + $8 = $98

We continue in this manner and see that the largest value of Vcur occurs when
we use items 1 and 3 with a total weight of 12 pounds and a value of $90.

Solving the Knapsack Problem Using Dynamic Programming

We can use Dynamic Programming to solve the Knapsack Problem if the solution
to the problem can be obtained recursively in terms of subproblems; i.e., the
problem exhibits optimal substructure. So the first thing we must do is define our
subproblems such that we can describe our final solution in terms of the solutions
to the subproblems as we did in the Coin Changing Problem. In addition, we
must have a recursive formula for the subproblems.

As before assume we have n items and a backpack with maximum capacity of
W . For concreteness, let’s consider the case of 5 items with the following weights
and values and a capacity of 20.

item # weight value

1 2 3
2 3 4
3 4 5
4 5 8
5 9 10

An obvious choice is to define subproblems with weight 1, 2, · · · , W . Does this
work?

As another approach, let’s try a subproblem where we would find an optimal
solution for

Sk = {items labeled 1, 2, · · · , k}

Does this work? Let’s look at our example to see why this doesn’t work either.
For example, for S4 we are using items 1, 2, 3, and 4. This four items weigh
14 and using all four is the optimal solution with a value of 20. Now when we
proceed to S5, which is the desired problem, we see that the solution to S4 is
not part of the optimal solution. Because the optimal solution for S5 uses items

#1, 3, 4 and 5 for a weight of 20 and a value of 26.

So we have to be a bit more clever in defining our subproblems in order to use
Dynamic Programming.

We define a function V (k,ω) where k = 0, 1, 2, . . . , n (the items) and ω =
0, 1, 2, . . . , W (the range of weights) which will give the maximum value for
weight ω using items 0, 1, 2, . . . , k. If we compute all entries of this array then
we will have our result.

We need a recursive relationship between the subproblems. We set

V (k,ω) =

{
V (k − 1,ω) if wk > ω

max
[
V (k − 1,ω), V (k − 1, ω − wk) + vk

]
else

If wk > ω then this says the item #k has a weight greater than ω so it can’t be
added to the knapsack and we use the value of the previous problem V (k−1,ω).

Otherwise, the item #k can be added to the knapsack and we have to update
the value V (k,ω). To do this we compute the value when we add item #k so
this is the value vk plus the maximum value using k − 1 items for a weight of
ω−wk. Then we must make sure that this value is greater than the value when
we didn’t use item k, i.e., V (k − 1, ω).

Example Let’s fill in the array for V for a small knapsack problem with capacity
of 5 and four items

item # weight value

1 2 3
2 3 4
3 4 5
4 5 6

ω → 0 1 2 3 4 5
i ↓

0 0 0 0 0 0 0
1 0 0 3 3 3 3
2 0 0 3 4 4 7
3 0 0 3 4 5 7
4 0 0 3 4 5 7

pseudo code

Given n items with weight wi and value vi and a total capacity of W

Initialize

for ω = 0, 1, . . . ,W set V (0,ω) = 0

for i = 1, . . . , n set V (i, 0) = 0

for i = 1, . . . , n

for ω = 1, . . . , W

if wi ≤ ω (item can be added)

if vi + V (i− 1,ω − wi) > V (i− 1,ω)

V (i,ω) = vi + V (i− 1, ω − wi)

else

V (i,ω) = V (i− 1, ω)

end if

else

V (i,ω = V (i− 1, ω) (item can’t be added)

end if

end for

end for

How does this compare with the Brute Force approach which is basically O(2n)?

Our outside loop is from 1 to n and the inside loop is from ω = 1 to W so
basically we have O(nW).

For example, if W = 20 and n = 10, 210 = 1024 and (10*20)=200.

Another way to look at this is with the Brute Force approach if it takes K units of
time to determine the solution with n = 20 then for n = 30 it takes 230 = 210220,
i.e., 210 ≈ 1000 times longer. For the same weight Dynamic Programming takes
30W versus 20W which is 1.5 times longer.

Solving the Knapsack Problem using Simulated Annealing

In order to use Simulated Annealing (basically the Metropolis Algorithm) we need
an energy to minimize and a way to change from one state to another.

For the Knapsack Problem a solution consists of all zeros and ones so we could
start with a vector of length n (for n items) and randomly set each entry to 0 or
1. To alter the state we could just randomly toggle one or more of the entries
from 0 to 1 or 1 to 0.

We want to minimize an energy so if we have a new state, say xnew, then we first
calculate the total weight corresponding to this choice of which items to include.
If the weight is feasible, i.e., less than or equal to the capacity of the knapsack,
then we just take the energy to be the negative of the corresponding values for
these items; i.e., minus the dot product of xnew and a vector of the item values.
However, if the weight of these items is greater than the knapsack’s capacity we
want to penalize this choice and set a large positive value for the energy.

Once we have the new state xnew and its corresponding energy Enew we need
to decide whether to accept this state or not. If the energy corresponding to
xnew is less than the previous energy, Eold then we accept it. However, if it is
not, this is where the Monte Carlo aspect of the algorithm comes in to play. We
generate a random number, say σ, between 0 and 1. If

σ < e(Enew−Eold)/T =⇒ accept xnew; otherwise reject

where T is the temperature. After the cycle is complete, we increase T by some
amount.

pseudo code

Input: n, the number of items, a vector w of weights for each item and a
vector v of values of each item; W the capacity of knapsack

Output: xnew final solution and corresponding value -Enew

Initialize

randomly set xold to be a vector of length n with entries 0 or 1

compute energy Eold corresponding to xold

for i = 1, number of cycles

create xnew by changing at least one entry of xold

calculate Enew

if Enew <Eold

accept step so xold = xnew; Eold = Enew

else

σ= rand(1,1)

if (σ < eEnew−Eold)/T)

accept step so xold = xnew; Eold = Enew

end if

end if

increase temperature, check for convergence

end for

Then we would need a function to get a new state xnew from xold and another
function to calculate the energy given a state.

Calculation of new state:

Input: xold and n

Output: new state xnew

xnew = xold

while xnew ̸= xold

flip probability = 1/n

bits to flip = (rand(1,n) < flip probability)

xnew = xold

xnew(bits to flip) = xor (xnew(bits to flip), 1)

end while

This uses a new Matlab command xor which is a logical EXCLUSIVE OR.

XOR(S,T) is the logical symmetric difference of elements S and T. The result is
logical 1 (TRUE) where either S or T, but not both, is nonzero. The result is
logical 0 (FALSE) where S and T are both zero or nonzero. S and T must have
the same dimensions (or one can be a scalar).

Example Set n = 5 and xold=(1, 0, 0, 0, 1)

flip probability = 0.2

rand(1,5) = (.0975, .2785, .5469, .9575, .9649)

bits to flip = (1,0,0,0,0)

xnew = xold = (1, 0, 0, 0, 1)

xnew(bits to flip)= xor (xnew(bits to flip), 1) = (0, 0, 0, 0, 1)

Calculation of energy of state

Input: state x, vector v of values of all items, vector w of weights of all items,
W the total capacity of backpack

Output: energy E of state

items weight = dot (x,w)

if (items weight < W) then

E = -dot(x, v)

else

penalty = items weight - W

E= 100 * penalty

end if

The penalty coefficient of 100 is random here; we just need a “large penalty”.

Example Let’s return to our small knapsack problem with capacity of 5 pounds
and four items and look at some results generated by our algorithm. We start
with an initial guess of x = (1, 0, 0, 0). Remember that the optimal solution is
using items 1 and 2.

item # weight value

1 2 3
2 3 4
3 4 5
4 5 6

cycle xold Eold xnew Enew accept
1 (0,0,0,0) 0 (1,0,0,0) -3 yes
2 (1,0,0,0) -3 (1,0,1,0) 92 no
3 (1,0,0,0) -3 (0,0,0,1) -6 yes
4 (0,0,0,1) -6 (0,1,0,1) 290 no
5 (0,0,0,1) -6 (0,0,0,0) 0 no
...

(1,1,0,0) -7

The Traveling Salesman Problem

Origin The traveling salesman problem (TSP) was studied in the 18th century
by a mathematician from Ireland named Sir William Rowam Hamilton and by a
British mathematician named Thomas Penyngton Kirkman.

Problem Definition: Given a set of n cities and the cost of travel or
the distance between each possible pair, the TSP is to find the best
possible way of visiting all the cities and returning to the starting point
that minimize the travel cost or travel distance.

If n is the number of cities to be visited, the total number of possible routes
covering all cities can be given as a set of feasible solutions of the TSP is

(n− 1)!

2

To demonstrate how fast the factorial grows, in the table below we give some
values for the complexity as a function of n.

n 4 5 6 7 8 9 10
(n− 1)!

2
3 12 60 360 2520 20,160 181,440

Clearly the Brute Force approach is not feasible unless n is quite small.

For the Traveling Salesman Problem , no serial algorithm exists that runs in time
polynomial in n, only in time exponential in n, and it is widely believed that
no polynomial time algorithm exists. Oftentime one has to settle for computing
an approximate solution, i.e. a single tour whose length is as short as possible,
in a given amount of time. For this reason, many of the approaches for solv-
ing the Traveling Salesman Problem are modified to take advantage of parallel
architectures; we will not consider those here.

Most applications of the TSP problem are in routing and scheduling. We list a
few real world applications here. These are taken from The Traveling Salesman
Problem by Rajesh Matai, Surya Prakash Singh and Murari Lal Mittal (available

free as a pdf download).

1. Vehicle routing. Suppose that in a city n mail boxes have to be emptied
every day within a certain period of time. The problem is to find the minimum
number of trucks to do this and the shortest time to do the collections using this
number of trucks. As another example, suppose that n customers require certain
amounts of some commodities and a supplier has to satisfy all demands with a
fleet of trucks. The problem is to find an assignment of customers to the trucks
and a delivery schedule for each truck so that the capacity of each truck is not
exceeded and the total travel distance is minimized. Several variations of these
two problems, where time and capacity constraints are combined, are common
in many realworld applications. This problem is solvable as a TSP if there are no
time and capacity constraints and if the number of trucks is fixed. In this case
we obtain an multi-salesman problem. Nevertheless, one may apply methods for
the TSP to find good feasible solutions.

2. Drilling problem of printed circuit boards. To connect a conductor on
one layer with a conductor on another layer, or to position the pins of integrated
circuits, holes have to be drilled through the board. The holes may be of different

sizes. To drill two holes of different diameters consecutively, the head of the
machine has to move to a tool box and change the drilling equipment. This is
quite time consuming. Thus it is clear that one has to choose some diameter,
drill all holes of the same diameter, change the drill, drill the holes of the next
diameter, etc. Thus, this drilling problem can be viewed as a series of TSPs, one
for each hole diameter, where the “cities” are the initial position and the set of
all holes that can be drilled with one and the same drill. The “distance” between
two cities is given by the time it takes to move the drilling head from one position
to the other. The aim is to minimize the travel time for the machine head.

3. Overhauling gas turbine engines. This application occurs when gas tur-
bine engines of aircraft have to be overhauled. To guarantee a uniform gas flow
through the turbines there are nozzle-guide vane assemblies located at each tur-
bine stage. Such an assembly basically consists of a number of nozzle guide
vanes affixed about its circumference. All these vanes have individual character-
istics and the correct placement of the vanes can result in substantial benefits
(reducing vibration, increasing uniformity of flow, reducing fuel consumption).
The problem of placing the vanes in the best possible way can be modeled as a
TSP with a special objective function.

4. The order-picking problem in warehouses. This problem is associated with
material handling in a warehouse. Assume that at a warehouse an order arrives
for a certain subset of the items stored in the warehouse. Some vehicle has to
collect all items of this order to ship them to the customer. The relation to the
TSP is obvious. The storage locations of the items correspond to the nodes of
the graph. The distance between two nodes is given by the time needed to move
the vehicle from one location to the other. The problem of finding a shortest
route for the vehicle with minimum pickup time can now be solved as a TSP.

Example As a small example of a TSP problem which we can solve by the Brute
Force approach of complete enumeration consider the following problem where
a salesperson wants to start and end at Chicago and visit New York, Pittsburgh
and Washington, D.C. The costs for a train ticket between each pair of cities is
given on the graph.

Chicago

Pittsburgh

New York

Washington, DC

$43

$56

$51

$44

In graph theory terms, we are looking for a circuit that visits each vertex once
which is called a Hamilton circuit (as opposed to an Euler circuit which tranverses
each edge once).

Because the number of cities is small we can enumerate all possible choices.

1. Chicago → Pittsburgh → DC →New York → Chicago =⇒ cost = $209
2. Chicago → DC→ Pittsburgh →New York → Chicago =⇒ cost = $214
3. Chicago → New York→ DC → Pittsburgh → Chicago =⇒ cost = $209
4. Chicago → Pittsburgh → New York →DC→ Chicago =⇒ cost = $185

5. Chicago → DC→ New York → Pittsburgh → Chicago =⇒ cost = $185
6. Chicago → New York→ Pittsburgh → DC → Chicago =⇒ cost = $214

Our goal now is to try to find a better way to solve the TSP using some of the
techniques we have learned.

20

Traveling salesman
What is the shortest path to loop through N cities?

[http://www.informatik.uni-leipzig.de/~meiler] [http://www.superbasescientific.com/]

Traveling salesman: engineering applications
What is the shortest path to loop through N cities?

500 cities, random solution!

[http://www.logicalgenetics.com/]

21

Traveling salesman: engineering applications
What is the shortest path to loop through N cities?

500 cities, a better solution!

[http://www.logicalgenetics.com/]

Traveling salesman: engineering applications
What is the shortest path to loop through N cities?

500 cities, a much better solution!

[http://www.logicalgenetics.com/]

Solving the Traveling Salesman Problem Using Branch and Bound

We can apply the Branch and Bound approach to solve our problem. Remember
that we need to have bounds in order to decide whether to prune a section of
the solution set.

An obvious approach is to initially calculate the cost of the path

1→ 2→ 3→ · · ·→ n− 1→ n→ 1

and this will be our current best solution, i.e., a bound on our result. When we
calculate a path that is less than this, we update our value. We will prune the
tree when we are calculating a partial path and its cost is already greater than
our current lower bound; i.e., there is no need to continue searching that path.

There are other ways to employ Branch and Bound techniques to solve the Trav-
eling Salesman Problem which are especially amenable to parallel computing.

Solving the Traveling Salesman Problem using Dynamic Programming

Remember that to use Dynamic Programming we have to define subproblems Sk

which have an optimality property so that to find the solution to Sn we can use
the solutions to Sk for k < n; in addition we have to have a recursive formula.
Recall that we break our problem into stages and then the stages into states
which allow us to get from one stage to the next.

The obvious choice is to let stage k represent visiting k cities (including the
starting city) and let the decision be where to go next. If the city we are in is the
state then this is not enough information to decide where to go to next. Instead
the state has to include information about all the cities we have visited plus the
city we have ended in. So we could think of a state as a pair (S, k) where S is
the set of cities already visited and k is the last city visited.

We need a recursive formula. Let

C(S, k) denote the shortest path from city 1 to city k that visits all cities in S

Then our recursive formula is

C(S, k) = min
m∈S−{k}

[
cmk + C(S − {k},m)

]

where cij represents the cost in going from city i to city j. The first term in this
expression gives the shortest way to go to city m without going through city k.

Let’s see if this would work for our small Traveling Salesman Problem where we
want to start and stop in Chicago. Number the cities in a clockwise manner, i.e.,
Chicago → 1; New York → 2; Washington DC → 3; Pittsburgh → 4

Chicago

Pittsburgh

New York

Washington, DC

$43

$56

$51

$44

• For S = {1} we have C(1, 1) = 0

• For S to contain two cities (including # 1) we have to compute:

– for S = {1, 2}

C(S, 2) =
[
C({1}, 1) + c12

]
= 0 + 56 = 56

– for S = {1, 3}

C(S, 3) =
[
C({1}, 1) + c13

]
= 0 + 51 = 51

C(S, 1) =
[
C({1}, 1) + c13

]
=

– for S = {1, 4}

C(S, 4) = min
[
C({1}, 1) + c14

]
= 0 + 47 = 47

• For S to contain three cities we have to compute:

– for S = {1, 2, 3}

C(S, 2) = min
m=3

[
C({1, 3}, 3) + c32

]
= 51 + 43 = 94

C(S, 3) = min
m=2

[
C({1, 2}, 2) + c23

]
= 56 + 43 = 99

– for S = {1, 2, 4}

C(S, 2) = min
m=4

[
C({1, 4}, 4) + c42

]
= 47 + 44 = 91

C(S, 4) = min
m=2

[
C({1, 2}, 2) + c24

]
= 56 + 44 = 100

– for S = {1, 3, 4}

C(S, 3) = min
m=4

[
C({1, 4}, 4) + c43

]
= 47 + 63 = 110

C(S, 4) = min
m=3

[
C({1, 3}, 3) + c34

]
= 51 + 63 = 114

• For S to contain four cities we have to compute:

– for S = {1, 2, 3, 4}

C(S, 2) = min
m=3,4

[
C({1, 3, 4}, m)+cm2

]
= min

[
(110+43), (114+44)

]
= 153

Note that there are two paths to start at Chicago and end at New York;
$153 is the minimum cost of the two paths. (If we go to Pittsburgh

first then we have 47+63+43= 153 and if we go to DC first we have 51
+63+44 > 153.)

C(S, 3) = min
m=2,4

[
C({1, 2, 4}, m)+cm3

]
= min

[
(91+43), (100+63)

]
= 134

C(S, 4) = min
m=2,3

[
C({1, 2, 3}, m)+cm4

]
= min

[
(94+44), (99+63)

]
= 138

Now to finish we need to take S = {1, 2, 3, 4} and for each option C(S, k) we
need to add in ck1; that is, the distance back to Chicago. We get

C(S, 2)+56 = 153+56 = 209; C(S, 3) = 134+51 = 185; C(S, 4) = 138+47 = 185

So we find that we can go either of two routes (just as we discovered before)
Chicago → Pittsburgh → New York →DC→ Chicago

or

Chicago → DC→ New York → Pittsburgh → Chicago

Solving the Traveling Salesman Problem Using Simulated Annealing

Lastly, we want to apply Simulated Annealing to the Traveling Salesman Problem

Remember that in Simulated Annealing we basically needed to determine two
things. First, if we are at state xold then we need to be able to generate a new
state xnew. There are different ways to do this. Secondly, we need to calculate
the energy corresponding to a given state. Once we do this, then the algorithm
is analogous to what we have done before.

In this exposition we assume that there are n cities and each is given a set of
coordinates (xi, yi) so that we want to minimize the total path distance; of course
we could just as easily have assigned a weight to each city.

To initialize, we set an initial value for our state xold. We can either take a
random permutation of the vector (1, 2, 3, . . . , n) or just take the vector itself.

If we keep the ordering we set

xold = (1, 2, 3, . . . , n, 1)

Now to obtain a new state xnew from xold two choices that are common in the
literature are (remember that other choices exist)

• a random section of the path is removed and then replaced with the same
cities running in the opposite order

• a random section of path is removed and then replaced in between two cities
on another, randomly chosen, part of the path.

Now we need to decide how to calculate Enew corresponding to a new state xnew.
Remember that when Enew < Eold we always accept the new state. However,
if this inequality does not hold then sometimes we still accept it, i.e., we “go
up hill”. Whether to “go up hill” or not is typically determined by generating a
random number and comparing it with the equivalent of the Boltzmann energy
probability.

For the Traveling Salesman Problem the new energy Enew is just the length of
the path of the new state xnew. So if j = 1, . . . , n represents the indices of the
new state with coordinates (xj, yj) then its energy is just

n∑

j=1

[
(xj+1 − xj)

2 + (yj+1 − yj)
2
]1/2

where the node n + 1 is always associated with city # 1.

One can add “constraints” to the problem by penalizing the energy. For example,
suppose that the salesman has an irrational fear of flying over the Mississippi
River. In that case, we could assign each city a parameter µi which is 1 if the
city is east of the Mississippi, and is -1 if it is west. Then we modify our energy
by adding the term

α|µi+1 − µi| or α
(
µi+1 − µi

)2

so that if the cities are on the same side of the Mississippi, then this term is
zero; however, if the cities are on opposite sides of the river then we penalize the
energy by an amount 2α or in the case of the second term 4α The algorithm
now attempts to find the shortest path which minimizes the number of crossings

of the Mississippi River.

There are many applets on the web that demonstrate the solution to this problem;
one such is located at

www.staff.science.uu.nl/ beuke106/anneal/anneal.html

