author: Janet Peterson

Numerical Solution of Ordinary Differential Equations (ODEs)

e |t is often the case when modeling some phenomena that we know something
about the rate of change of the quantity of interest, that is, its derivative.

e For example, in Calculus | you probably looked at exponential growth and
decay laws. One application of this is to model the decay of a sample of
a radioactive isotope by saying that the rate of decay is proportional to
the amount present at any time. For example, if ()(t¢) denotes the amount
present at time ¢ then

d@Q
dt
e Recall that the general solution of this problem is Q(t) = Ce* for some

constant C' since Q'(t) = Cke" = CQ(t)

e In order to uniquely determine the solution then we must be given an initial
condition such as Q(0) =)y which gives us the unique solution Q(t) =

Qoekt_

kQ

e We call the following ODE a first order initial value problem.

Initial Value Problem (IVP)

dy
— = f(t tho <t <7

y(to) = Yo
Here f(t,y) is a given function of ¢, y and vy is the given initial data.

e We will also use the shorthand notation ¥/(t) = f(¢,y).

e We call this IVP a time dependent problem and our goal will be to
— determine an accurate solution at some time 7T’
— and/or determine the time evolution of the solution.

e | he information we have to determine the solution is the

— the initial value of y

— the slope of y given by f(¢,y), i.e., how y changes with time.

d
e For example, if d—i = 1 and y(0) = 2 then this says that the slope is a

constant value one and y is initially two so we know that y(t) =t + 2.

e Our model IVP is a first order ODE, that is, the highest derivative in the
equation is first order.

Uniqueness of the Solution of an Initial Value Problem

e Before we approximate the solution of a differential equation in general, we
should ask ourselves if it has a unique solution.

e For example, if you were asked to write a code to approximate the solution
of y/(t) = sint you would not be able to. The reason is that this problem
does not have a unique solution but rather its solution is given by y(t) =
— cost + C for some arbitrary constant C'. The problem is, of course, that
we have not provided an initial condition.

e We might ask ourselves, however, if every IVP has a solution; that is for any
fty).

e [he answer to this is no. We have to require a certain amount of smoothness
of the function f(t,y).

e Standard texts on ODEs discuss conditions which guarantee existence and
uniqueness of a solution to our IVP.

e As an example, consider the IVP

y'(t) =y, y0)=0

This problem does not have a unique solution. In fact both
1
=0 and = —t*
Y Y A
are solutions.

e Recall that to verify a given function is a solution to the [VP we simply show
that it satisfies the DE and the initial condition. In our example y = itz IS
a solution to our VP since

1 |
=t =212 =
Y 5 A VY

Clearly it satisfies the initial condition 3(0) = 0

e In the sequel, we will assume that our IVP has a solution which is unique.

Approximating Derivatives by Difference Quotients

e One standard approach is approximating the solution of a DE is to replace
the derivatives with difference quotients.

e You have already used difference quotients in calculus. For example, you
have approximated the derivative of y with respect to ¢ by the change in
y over the change in t. This is a difference quotient because you have the
difference in y divided by a difference in ¢; i.e.,

y(t + At) — y(t)
At

e An easy way to derive difference quotients is through the use of Taylor's
series.

e Recall that a Taylor's series for y(t) in the neighborhood of ¢ is given by

Atdy At2d?y A?dy A" d™y
P Af) = () - =YY
yt+at) =yt + ot S T T T e

e \We assume this expansion is valid near ¢; i.e., when At is small. Note that
we expect the terms to decrease in size as n increases because each term is
a factor of At to a higher power.

o |f we keep two terms on the right hand side of this expansion then we have

At dy
y(t + At) ~ y(t) + TE
which implies
t+ At) —y(t
S ~ U) — y(t)

At

e This is called a forward difference because we are sitting at the point ¢ and
differencing ahead to ¢t + At.

e If we consider the Taylor series

Atdy At?d?y A dy
t—At) = y(t) — === — (=1
vt =at) =yt = T orae e Y

then keeping the first two terms on the right gives

At dy J() ~ y(t) — yA(;f — At)

This is called a backward difference because we are sitting at the point ¢ and
differencing backwards in time to ¢t — At.

e We can also obtain another approximation to 3/(t) by keeping the first three
terms on the right side of each expansion and then combining them. We
have the two approximations

At dy N At d?y
1 dt 2! dt?

y(t + At) ~ y(t) +

Atdy At*d*y
t — At) =~ y(t) —
y)~ y(t) 1! dt i 21 dt?

and subtracting gives

Atdy dy ylt+ At) —y(t — At)
At) —ylt —At) = 2——= = — ~
e T T 2t

This is called a centered difference approximation to /().

e \We can also obtain approximations to higher order derivatives. For example,
to approximate 3”(t) we add the expansions (so that the terms for y/(¢)
disappear) for y(t + At) and y(t — At) to get

y(t + At) +y(t — At) = 2y(t) + At*y"(t) + O(AtH

so that

non Y+ AL) = 2y(t) +y(t — At)
Yy (t> ~ AtQ

This is called a second centered difference. We will return to this difference
quotient when we look at a second order equation.

e How do we know which approximation to 4'(t) to use?

e All are useful in particular problems so the type of the problem is important.

For example, we will see there is a difference in choice of differences for an
IVP and a BVP.

e Another way to choose between two difference quotients which work for your
particular problem is the accuracy of the approximation.

Forward Difference Approximation to ¢’ at ¢

o Y+ At) —y(¥)
y (t) ~ A

Backward Difference Approximation to ¢’ at ¢

y(t) — y(t — At)
At

y'(t) ~

Centered Difference Approximation to ¢/ at ¢

e Y+ At) —y(t — At)
yit) ~ N,

e \We call the forward and backward approximations first order and the centered
difference a second order approximation. We will make this more precise
shortly.

Errors in difference approximations

e We would expect the centered difference to be more accurate than either
the forward or backward difference. Why?

e \When we obtained our forward or backward difference we kept two terms
on the right hand side. The next term (which dominates the others on the
right) is order (At)?. Let's keep this term and look again at the derivation

Atdy At*d?y

At) ~
y(b+ A&t = y(t) + 0+ 5 g

which implies
) ~ y(t+ At) —y(t) Atd’y
! At 2 dr?
e So we say that the error is order At and denote as O(At) which means a
constant times At.

e Clearly a backward difference has the same accuracy, i.e., O(At).

o Let's look at the centered difference. Recall that we kept three terms on

the right side to derive the difference approximation. To derive the error we
keep the next term.

Atdy At*°d’y AtPdPy
t + At) ~ yl(t
b+) =yl) + Tt e T S

B At dy N At d?y B A d3y
1IMdt 2 dt? 3! dt?

y(t — At) = y(t)

Recall that we subtracted these two expansions to get our approximation so
we have

dy _Atdy
t+ At) —y(t — At) = 2At— + 2

which implies
(1) ~ y(t + At) —y(t — At) At*d’y
A AL 6 di3

and thus
B y(t + At) — y(t — At)

y'(t) = A + O(At)?

e We see that this approximation to y'(¢) has a smaller error than either the
forward or backward difference.

e These three differences are the most commonly used for approximations to
the first derivative. We summarize them here.

Approximating the Solution to our IVP

e Recall that we are given the value of y at some initial ¢; for simplicity we
take ¢ = 0 and the value of y at zero to be y5. We want to find y at later
times. This was represented by our general IVP

—=fly,t) y(0)=1wo

where f is a given function of ¢ and .

e [he strategy to approximating an IVP is to use the initial value yy at ¢ = 0
and the slope (i.e., f) to predict the solution at time t = At. Then to use
the solution at t = At and the slope (or perhaps both the solution at ¢t = At
and ¢ = 0) to predict the solution at ¢t = 2At, etc.

e |[f we do everything correctly, then we expect that as At — 0 our discrete
solution at At, 2At, 3At, - - - will approach the actual solution of the IVP at
these times.

e [his strategy can be generalized to spatial approximations too.

e So the question is, how do we use the solution at ¢ = 0 and the slope to get
an approximate solution at t = At?

e [he way we obtain an approximate solution clearly has to be related to the
DE.

e In the DE we replace the derivative with a difference quotient and evaluate
the right hand side at the appropriate time level.

e Recall that the forward difference operator is an approximation to %/(t) using
the time values at ¢t and ¢ + At. Let's substitute this into our DE

y(t + At) —y(t)
~ t),t
~ Fly(t), 1)
This equation could be solved for y(t + At) in terms of y at ¢; i.e.,

y(t + At) = y(t) + At f(y(t),)

Now everything on the right hand side is known when ¢t = 0 so we could get
an approximation to y(At).

e Notation We will use Y to denote our discrete (approximate) solution.
We will add a superscript to denote the time it corresponds to. Consequently

Y ay(t")

where y(t) is the exact solution to our IVP. We take Y' = 1 the initial
value at ¢ = 0.
e Then our difference approximation to our VP becomes

Forward Euler Method for IVP

Y =Y L ALF(Y (), 1)

YO:yo

e The name Euler is often used for these first order difference equations.

e [he way to remember that it is a forward difference scheme is that we are
sitting at the time ¢ and differencing forward in time to ¢t + At whereas in
a backward Euler we are sitting at the point ¢ and differencing backward in
timetot =t — At.

Example

Consider the IVP

whose exact solution is y = 3¢’ —t —1sincey =3¢’ —1=(3e' =t — 1)+t =
y(t) +t and y(0) = 3¢’ — 1 = 2. Approximate the solution at ¢ = 1 using a
Forward Euler approximation with At = .2 and calculate the error.

Note that to get the approximate solution at ¢ = 1 we need to get the solution
at t = .2,.4,.6, .8 first. In our example f(y,t) =t +y. We will denote Y! as
our approximation to y(.2), Y as our approximation to y(.4), etc.

y(2) =~ Y =Y+ At(0+Y") = Y =2+ 212) =24
YA =Y =Y +AH(2+Y) = Y? =24+ 2(.2+24) =2.922.88

Yy(6) =Y =Y+ At(4+Y?) = Y* =354

y(0.8) m Y =Y+ At(.6+Y?) = Y =4.4208

y(1.0) =Y’ =Y '+ At(8+Y?) = Y = 5.46496

The exact solution at ¢t = 1 is e! = 6.15485 so our error is 0.68989 which is quite
large.

If we repeat the calculation reducing At then we get the following results

At n, Y™ error
the number of steps

0.2 5 5.46496 0.689885
0.1 10 5.78123 0.373618
0.05 20 5.95989 0.194952
0.025 40 6.05519 0.099654

0.0125 80 6.10445 0.0503907

e So as At becomes smaller, our error becomes smaller.

e One thing to note about this example (which is true in general) is that as
time increases our error grows. For example, in the above calculations the
error at t = .6 is much smaller than the error at ¢t = 1.

e This is because we are actually make two types of errors.

e We are making one type of error because we are replacing a derivative with
a difference quotient. We know that this error is O(At).

e However, after calculating Y we are making another error. When we calcu-
late Y'! we are using the exact value of YV = 1, whereas when we calculate
Y? we are using our approximate value for y(At) given by Y!. This is
repeated in subsequent steps and our error grows.

e We will return to looking at this error after we implement the method and
consider both a local error and a global error.

Implementing Forward Euler

e The implementation should be clear from our previous example.

e We need to know
— Yo
— the final time
— the number of steps (from which we can determine At)
— a function routine for determining the right hand side f(y,)

e As far as storage goes we could either store our approximation at every time
or we could overwrite.

e Typically we will overwrite and write our solution to a file for graphing.

e 50 basically we just have to loop over the number of steps and implement
our algorithm; in our loop we have

t = t + deltat
ynew = yold + deltat * rhs(yold, t)

where rhs is our function for the right hand side and t has been initially set
to zero and deltat computed from the final time and the number of steps.

e We would then write off the time and ynew and to get ready for the next
step we set yold = ynew since we are overwriting.

e For classwork you will write a function to get ynew from the values yold,
t, dt and test it on our example we did where the rhs was y+%. In addition
to calculating an error, you can plot the exact solution and its approximation
too.

Higher Order Taylor Series Methods

e We can derive more accurate methods based on the Taylor Series by keeping
more terms.

e For example, we used the Taylor Series expansion
y(t+ At) = y(t) + 9/ () At + O(AL)
to derive Euler's method.

e If we keep another term in the series we have
2

At
y(t+ At) = y(t) + o' (1) At + y”(t)T + O(At)
e In order to solve this for /() we need an expression for " (t).

e In some cases this is easy to obtain since

/(1) = f(ty) = (1) = (flty) = TL L TD — pyfy

dtdt dydt
where we have used the chain rule.

Runge Kutta (RK) Methods for IVPs

e Recall that our goal is to now find methods (other than those obtained by
keeping more terms in the Taylor series) which give more accurate results
than forward Euler for our IVP

Initial Value Problem (IVP)

e Recall that to derive higher order Taylor series method we had to repeatedly

differentiate f(t,y).

e The Runge Kutta (RK) methods are a family of methods that do not require
differentiating f(t,y).

e Recall that in Euler's Method we simply use the solution at " and f evaluated
here to estimate the solution at ¢**1.

e The basic idea in RK is that we will sample f at several judiciously chosen
points in [t",t"*1) and use this information to more accurately estimate the

solution at "1,

Midpoint Method

e The simplest RK is the midpoint method where we estimate the slope (i.e.,
f) at the midpoint of [t*,#""] and then use this to estimate the solution at
t"*1 using Euler's method.

. . . 1
e To estimate the slope at the midpoint t""2 = " + % we take f evaluated
| . . 1,
at t"2 and an estimate to the solution at t""2, i.e.,
At 1
f(tn + 7, Yn+2).

' 1 .
We don't have Y2 but as an estimate we take an Euler step of length %.

t’rH—l

e Recall that the solution at predicted by Euler's method is

Yn+1 —Y" + Atf(tn, Yn)

. 1
so that we approximate Y2 by

At

e Now we estimate the solution at "' by Euler's method where we use the
. 1 .
approximation to the slope at t"*2. We obtain

At
Yn—l—l —y" + Atf (tn-i—%’ y™n 4+ 7f(tn’ Yn))
e [he standard way that this method is written is
k1= Atf(E",Y")

At 1
ko = Atf(t" + - Y™+ §k'1)

Y'rH—l —Y" + k2

Example

Approximate the solution to the VP

dy
o +y (0

at 7' = 1 using 5 equal timesteps in the Midpoint RK method. Here f(t,y) =
t+v.

If we follow the steps of the algorithm above we have as an approximation to

y(At) =y(.2)
k= Atf(t°, Y% = 2£(0,2) = 2(0+2) = 4

ky = At f(%, Y°+%k1) = 2(f(.1,24.5(.4) = .2f(.1,2.2) = .2(.142.2) = .46

Y=Y 4+ ky=2+ .46 =2.36
The actual error here is 0.00420827.

Continuing in this manner we get the following table of results:

n |t YY" y(t") | error

0.22.46 2.4621 |0.004208
0.4 3.0052 |3.075470.010274
0.6 3.847543.863 |0.01881
0.8/4.846 |4.87662|0.030619
1.0/6.10812 | 6.1548 |0.046721

B W N

If we compare this error with the results from Euler's Method we can see that it
Is much better. In the plot below the RK and the exact solution lie almost on
top of each other whereas Euler's method starts to deviate quickly.

Euler & Midpoint Approximation
6

5

4

Deriving a RK Method to Get a Second Order Scheme

e In the Midpoint Method we chose an “easy” point in the interval [t7, t" 1],

. _ 1 . . .
i.e., the midpoint t"*2. We could derive the error estimate for this method
but we are going to do something more general.

e We are going to take the approach that instead of using the midpoint tnts
we are going to find the point in [t", "] which gives us the most accurate
method.

e Here we are deriving a two-stage RK method since we are using information
at t" and at another point in our interval [t", "],

e This is the way that most useful RK schemes are derived.

e Recall that the midpoint rule was written as
k1= Atf(E",Y")

At 1
ko = Atf(t" + o Y™ + §k1)

Yn+1 —Yy" + k‘2
Instead of using the midpoint we will use an arbitrary point t"+aAt, for 0 <
a < 1. Likewise instead of evaluating f in the second stepaty =YY" + %kl
we will use Y+ B3k;. Moreover instead of setting Y™ =Y"+0-k;+1 ks
we will use the general expression Y"1 = Y 4 ak; + bky. We have

ki = Atf(t", Y™
Y™ = Y™+ akqy + bko

e Our goal is the find «, 8, a,b so that the method is as accurate as we can
achieve; in this case it is second order.

e To do this we return to our Taylor series expansion with remainder for
y(t" + At)
At? At

y(tn+1) _ y(t“) + y/(tn)At + y//(tn)7 4+ ym(gn)T

e Now we want to take this expansion and subtract our expansion for Y"1
to get the highest power of At, i.e., the highest order method possible with

only using information from two points.

e To do this we would like to relate the derivatives of y(t) to f(¢,y). Clearly
/' (t) = f(t,y) but what about y”(¢)? We know that

'(0) = S/ (0) = 1)

and since f is a function of both ¢ and y(t) we use the chain rule to get

ofot Ofdy
AR R
y(t) = ot ot | oy dt et Jut

Thus we can write our Taylor series expansion as

n+1y __ n A_t2 3
y(") =y(t") + fAL+ (fi + f,f) ; + OAt

where we have left off the fact that f and f; + f,f are explicitly evaluated
at ", y(t") for brevity.

e To make our truncation error second order we have to have
y(tn—l—l) . Yn—l—l _ O(At?’)

where Y™ is computed using the exact solution y(t"). Plugging y(t") into
our RK for Y™ we have

Y™ = y(t") + ak; + bk,

where now k; = At f(t", y(t")) and
kfg — Atf (tn + OzAt, y(tn) + ,8k’1)

Now k; is in a form we can subtract from our Taylor series but k5 is not. So
we expand f(t'"’ + aAt, y(t") + ﬁkl) in a Taylor series in each component.

We can either do this twice, the first time holding the second component
first and then holding the first component fixed or we can use a Taylor series
expansion for two independent variables. We get

FA™ + alt, 2) = f(t", 2) + aAtf;(t", 2) + O(AF)

Here we have set z = y(t") + (Bk; for shorthand notation. Note that this
term f(t" + aAt, z) is multiplied by At in the definition of ky so we only
need to keep terms through At?. Now we expand each of these terms in the
second argument z. We have

F" y(t") + Bk1) = f(£",y(t")) + Bk fy(¢", y(t")) + O(AL)

and

Again we only kept terms through O(At?) since the whole expansion is
multiplied by At.

e Combining these we get the following expression for ko

e We are now ready to subtract our expansions for Y"1 and y(t"™!). Recap-
ping, we have the following where f and its derivatives are all evaluated at
(™, y(t™)) (I have left this off for clarity of exposition)

Y™ = y(t™) + aky + bAL] f + Bk fy + aAtf;] + O(At)
= y(t") + aAtf + bAL[f + BALS [, + aALf;] + O(AL)’

and
2

A
YY) = () + FAL+ (fo+ fu) =+ O(AF)

Subtracting yields
n+1 n+1 2, (1 2(1 3
Y=Y ™ = FAR(1—a—b)+At ft(§—ba) +Ff,A (§—bﬁ) +O(AR)

So to make y(t") — Y™ = O(At?) we need all the terms involving lower
powers of At to disappear, i.e., we need

a+b=1 2ab=1 28b=1

e These equations are under-determined and have an infinite number of solu-
tions.

e For the midpoint rule we have a =0, b =1, a = % 8 = % which satisfy the

equations. Thus the midpoint rule is a second order method.

e However, the usual choice is a = b = % and o = (3 = 1.

e We take our second order scheme as follows.

Classical Second Order Runge Kutta Method
ki = Atf(tna Yn)

ko = Atf(t" Y™ + k)

1
y"tl =yn + 5(161 + kz)

Runge Kutta Methods for Solving Systems of IVPs

e The concept of generalizing RK methods for solving systems of IVPs is similar
to what we did for Euler's method.

e Consider the system of two IVPs
w(t) = f(t,uv) V(t) =g(t,u,v)
where
u(t®) = ug, v(t®) =vyp.
e Since each equation has a different right hand side, we have to compute the
k; for each equation.

e Suppose that we are using the midpoint rule which is a second order scheme.
Recall that here we have for a single IVP

1 1
ki = AL, Y™) ko= Atf(t" + 5 Y™+ §kl), Y™ = Y™ 4k,

e To distinguish the two sets of coefficients lets call the terms for u, k; and
those for v, m;.

e Lets look at how we compute U', V1. We first compute k; and m;
ki = Atf(to, UO, VO), mp = Atg(toa UOJ VO)

e Now we compute ko, mo

At 1
2’ 2

1 At 1 1
k‘l, VO+§m1), Mo — Atg(to-F?, Uo—l——k‘l, V0+—m1),

UO
T 2 2

ko = Atf(t°+

e Note that we can not compute all the k;'s and then all the m;'s. Why?

e Finally we compute the solution
U'=U+k V'=V'+my
e Example. Consider the system

2
u = v’=—Zv

u(l)=10 v(1)=1
Lets do one step of length 0.2 using the midpoint RK scheme.

For U! we have

k= 2f1,0°%V% = 2xV?=.2 since f=v

—2
my =.29(1,U°, V") = 2 % (T) x V0= —-04 sinceg= —%v

k
by = 2f(11L,U° + 25 VO + %) — 2(1 4 (—.4)/2) = 0.16
mo = .Qf(l.l, U + ?’ V¥ + 7) = Q(H)S = —0.2909

U'=U%+k,=10+0.16 = 10.16

Vi=V"4my=1-0.2909 = 0.709091

60

|
'd2" using 2:3
'dl'u 2:3

'd'u2:3

4

120

Local and Global Errors for Forward Euler

| ocal truncation error

e [he local truncation error is the error that we would make in one step if we
start with the exact solution.

o Lets take YY" = y(t") (i.e., the exact solution at time ¢") and perform one
step of our method. We take our approximation for Y"*! and combine it
with our Taylor's Series. We have our difference equation with Y" = y(¢")

Y = y(t") + Atf(t,y(t") = y(t") + Aty/(1")

and the Taylor series

At?
y(t" + A1) = y(t") + Aty (") + —=y"(€a) 1" <& <"+ AL

where we have used the remainder form of the Taylor's series. Subtracting

gives the local truncation error

yit" + 80— v+ = 2ye) — o)

e This error is due to the fact that we are approximating the derivative by a
difference quotient.

e A method is called order k if the local truncation error is O(A#").
e Consequently Euler's method for our IVP is called first order.
Global error

e Separate from the local truncation error is the global error which is the actual
difference in our exact solution at ¢ and our approximate solution at this
time.

e Of course this is the error we are most interested in.

e This error is found by accumulating the errors that we make at each of the
steps before t".

e It turns out that under certain conditions we can control the local truncation
error (by adjusting At) to get a desired global error.

e In fact, under certain conditions one can prove that

n
global error at t" < Z LT Ej
k=1
where LT E). represents the local truncation error at step £.

® S0 in our case the global error at time " is bounded by

"L AP
2Oy

k=1
where we let C; = |3/”(&;)]. Now if C'is the maximum of C; then
—~ A1 C C ~
> =< CAPLCAP+ - +CAP] = S (RABAL = T1"At = CAL
k=1

Thus we say our global error is O(At) since %t” Is a constant.

e [he condition that guarantees that we can control the global error by con-
trolling the local truncation error is tied to the concept of stability which
basically means that small changes in the initial data produce small changes
in the IVP solution. We will assume we can control the global error by
controlling the LTE.

How can we control the local truncation error to guarantee a global error less
than some tolerance?

e Suppose we want the global error at T' = nAt to be less than tol.
e Assume we have a bound M for the second derivative of our solution, i.e.,
'O <M 0<t<nAt=T

and our local truncation error at each step satisfies

At?
|LTE/£‘ < MT
e |[f we can bound the global error at T" by the accumulated LTE then
—~ M M
T)-Y" <Y —At=—"TAt
y(T) <) > >

k=1
o [f we want the global error at time 1" to be less than some tolerance, i.e.,

y(T) = Y| < tol

then we can determine the number of steps (and thus At) which guarantees
this.

e [o make the global error less than our tolerance we simply require

M
then we are guaranteed that
y(t") = Y| < tol

e Consequently, we choose the number of steps n (and thus At) to be the
smallest integer that satisfies

M T?
—— < tol,
2 n
where we have written At = %
e Consequently
MT?
n p—
2 - tol

e Of course the only way we can use this is if we have a bound on v".

e Example

Consider the IVP
dy

i sint y(0) =—1

where we want to approximate the solution at 7' = 2 with an error tolerance

of 0.01.

Now ¢/ = sint so y” = cost and thus |y”(t)] < 1 for all t. Using the
expression

MT*?

< tol
2n

yields

1'22<001:>2<oo1:> s 2 200
n n — 0.01

Below is a summary of the errors at ¢ = 2 using a range of steps. Note
that our estimate does NOT guarantee that this is the smallest number of
steps you can take to get the desired error. Rather it says that if you choose
this number of steps, you are guaranteed that the error will be less than the

prescribed tolerance. Note that in our case choosing n = 100 actually has
the global error less than our tolerance.

n error

25 0.037127
50 0.01837
100 0.00914
150 0.006083
200 0.00456

e How can you incorporate this estimate into a code?

e You need to input your final time, your tolerance and a bound for "(t).
Then you can use the intrinsic function

ceiling(a)
which gives the smallest integer > a.

e For example

n = ceiling (M * T T / (two * tol))

