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Fig. 4. A subprogram written by Fermi for calculating phase shifts by finding a
minimum chi-squared in a fit to the data.

Fig. 5. A portion of the printout of the program containing the subprograms described
in Figs. 3 and 4. The program is written in machine language in hexadecimal
numbers.
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resonance because the computer would
find solutions that we didn’t expect were
there. We would put a program into the
machine fully expecting the quantum state
of the resonance to emerge. But no. A
computer doesn’t pay any attention to
what Nature would like the solution to be;
it has its own way of finding solutions.
And all of a sudden it began to find solu-
tions, many of them—six of them—that
had nothing to do with the resonance. It
found many sets of phase shifts that gave
good fits to the data, leaving open the
question whether the resonant solution
was the correct one. The resonant solution
was appealing in that it accounted for all of
the unusual features found in the experi-
ments, but the nonresonant solutions were
not easy to rule out.

I won’t say that this confused
Fermi—that would be a little too
harsh—but the result of all this was that he
couldn’t claim with certainty that we had
discovered a resonance in our experi-
ments. As long as the computer was turn-
ing out solutions, good fits of the data,
good chi-squareds, that were nonresonant
solutions, he was always forced to con-
clude that the result was ambiguous.

Now Hans Bethe, who had been head of
the Theoretical Division at Los Alamos
during the war, decided to get into the act.
He made himself a great expert in phase-
shift analysis. He wasn’t satisfied with the
way Fermi was handling the problem, and
he went in with the idea that he wasn’t
going to be that naive and that he could do
better by including additional physics
arguments. So he enlisted Nick’s aid and,
with Fred deHoffmann to help him,
mounted a second program in phase-shift
analysis. So here we had Nick on both
sides of the competition, an odd situation
that only someone like Nick could handle.
In matters of science, Nick had no
favorites. In the end, I think, the problem
was handled best by two of my graduate
students, Ronald Martin and Maurice
Glicksman, working separately. They
didn’t have a fancy computer and there-
fore had to use much simpler approaches

103

Metropolis

The tables turned out to be very useful and
were widely used. I still have my copy.

So anyway, Fermi came to Nick with his
phase-shift problem. As always, Nick was
extremely helpful, and they carried out the
work. I learned all about it when Fermi
returned to Chicago in the fall of 1952, so
steamed up about computers and the
MANIAC that he announced he would
give a series of lectures on digital comput-
ing. We were treated to a magnificent
course—Fermi at his best. We learned for
the first time about binary and and hexa-
decimal arithmetic, Boolean algebra, and
linear programming. With this kind of
introduction, we were easy converts to the
cause of computers in science, and we
even began to go out to Argonne, whereby
that time the AVIDAC was running, to
learn how to program and run that ma-
chine. The gospel according to Nick
Metropolis was taking effect.

There’s an amusing story about Edward
Teller that fits in here. Remember that
Nick had been a member of Teller’s group
when they were working on the “super.”
Now, Teller was not one to let Fermi leave
him behind. Anything Fermi could do, he
could do too. So Teller also became a
student of Nick’s and learned how to pro-
gram the MANIAC. When he came back
to Chicago—he was on the faculty
then—not to be outdone by Fermi he an-
nounced that he would give a colloquium
on the subject of computers. But when the
colloquium notice appeared, it didn’t con-
vey exactly the impression he had in-
tended. It read,

Edward Teller
The MANIAC

To show how closely Fermi inter-
acted with the MANIAC, I want you to see
some of his programming efforts, done in
his own hand. Remember, these were the
days before FORTRAN. Programming
was done at the lowest level, in machine
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Fig. 3. A subprogram written by Fermi for converting data in memory from hex-
adecimal to decimal form and printing the results.

language. Figure 3 is a subprogram Fermi
wrote to convert the data in memory into
decimals and to print the results. Figure 4
is a block diagram of the program for
calculating the phase shifts by finding a
minimum chi-squared in a fit to the data.
And Figure 5 is a printout of the program
from the MANIAC. Note the use of hexa-
decimal numbers. The comments are writ-
ten in Fermi’s hand.

Phase-Shift Analysis

In this period, 1953 and 1954, phase-
shift analysis was such a hot subject that it
occupied center stage in the elementary
particle physics community. At the

Rochester Conferences held in those and
subsequent years, you could talk about
alpha three three and alpha three one, and
everyone understood that these were the
phase shifts of the pion-proton scattering.
The physics was important-the delta was
a new particle.

In working with the phase-shift analysis
program, we encountered, for the first
time, solutions in hyperspace, many-func-
tional space. You had to get used to the
fact that this kind of space has its own
problems of minimization, that you could
easily fall into the wrong minimum and
end up with wrong solutions. The vir-
tuosity of the computer almost made us
lose sight of the discovery of the proton
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Metropolis

The ENIAC

The great step forward in computing
was the introduction of’ electronics, and
now the ENIAC entered the scene. The
ENIAC was the first electronic, digital,
general-purpose, scientific computer. It
was designed and built for the Aberdeen
Proving Grounds by a group of engineers
under the direction of Pres Eckert and
John Mauchly. It had 18,000 vacuum
tubes and computed 1000 times as fast as
its closest electromechanical competitor.
The machine was built during wartime on
the promise that it would calculate
ballistic trajectories at least ten times
faster than the mechanical differential
analyzers then in use. As things frequently
turn out, the machine was now working as
promised—but the war was over, and sud-
denly no one cared that much about calcu-
lating ballistic trajectories.

The  connect ing  l ink  be tween the
ENIAC and Los A1amos was Johnny von
Neumann, who was a consultant both at
the Aberdeen Proving Grounds and at the
Lab. He was tremendously excited about
the ENIAC. He took a deep interest in its
design and thought a good deal about what
could be done with it. When he came to
Los Alamos early in 1945, he told Nick.
Edward Teller, and Stan Frankel about
what the Eckert and Mauchly team was
doing. They were enchanted. You know
how things sometimes work out if you are
in the right place at the right time—and
prepared for the opportunity. Well, von
Neumann suggested that perhaps Los Ala-
mos had a problem that could be worked
out on the ENIAC and invited Nick and
Stan to try the new machine. It was a great
opportunity, and they seized it eagerly.
And so it turned out that the first serious
problem the ENIAC solved was the one
Metropolis and Frankel put to it regarding
the “super,” the thermonuclear bomb.

By this time the idea of the stored pro-
gram had already been conceived. prin-
cipally by John von Neumann and his
collaborators on the ENIAC. They had
already begun to design the EDVAC, a
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computer that would have a stored pro-
gram. The ENIAC was programmed by
connecting cables and wires and setting
switches on a huge plugboard that was
distributed over the entire machine. Fig-
ure 1 is a photograph showing young
women programming the ENIAC by inter-
connecting the electron tube registers with
cables inserted in plugboards, It was an
awkward and tedious way to tell the ma-
chine what to calculate and what to do
with the results. When von Neumann was
in Los A1amos, in about 1947. he de-
scribed a suggestion made by Richard
Clippinger of the Ballistic Research Labo-
ratory on how the ENIAC might be con-
verted to a limited stored-program mode.
The idea was to rearrange the so-called
function tables, normally used to store 300
twelve-decimal-digit numbers set by man-
ual switches. to store up to 1800 two-
decimal-d ig i t  numbers .  each pai r  of
numbers corresponding to an instruction.
A particular problem would correspond to
a sequence of’ such instructions. This se-
quence would be set on the function
tables. A background control would inter-
rogate these instructions sequentially,
including so-called loops of instructions.
Changing from one problem to another
would be achieved by resetting the
switches of the function tables to cor-
respond to the new sequence of instruc-
tions. Figure 2 shows the function tables of
the ENIAC.

This suggestion made a deep im-
pression on Nick, but there was a missing
element—the background control. On a
visit to the ENIAC in early 1948, Nick

learned that a new panel had been con-
structed to augment one of the logical
operations. It was a one-input, one-hun-
dred-output matrix, and it occurred to
Nick that this matrix could be used in-
stead to interpret the instruction pairs in
the control mode proposed by Clippinger.
Such a panel would greatly simplify the
implementation of a background control.
He told von Neumann about it and was
encouraged to go ahead and try-and so
he did. The scheme was implemented on
the ENIAC forthwith, and Nick’s set of
problems-the first computerized Monte
Carlo calculations—were run in the new
mode.

The MANIAC

After the war Nick joined the faculty of
the University of Chicago, to help set up a
major computing facility. When that
didn’t materialize as quickly as he had
hoped ,  he  began  to  th ink  of  o ther
possibilities, and about that time he got a
call from Carson Mark, head of the Theo-
retical Division at Los Alamos. suggesting
that he set up a computing Facility here.
Nick was ready, willing. and able. The
moral of my story is that fortune favors
the prepared mind. Nick was right there.
well prepared to do just what he was asked
to do, and that’s how the MANIAC was
born.

The Mathematical and Numerical Inte-
grator and Computer—the MANIAC—
was designed according to von Neumann’s
principles. which had been set forth in a
remarkable publication by Arthur Burks.
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Herman Goldstine, and Johnny von Neu-
mann. The MANIAC borrowed heavily
from the IAS, the computer being built at
the Institute for Advanced Study under
von Neumann’s direction. But because the
MANIAC came later, Nick was able to
avoid many pitfalls that delayed the IAS.

As I have mentioned, many computers
were built in this outburst of activity’ after
the end of the war. The ENIAC had started
a revolution that continues to this day,
with no end yet in sight. But the unusual
success of the MANIAC was due primarily
to the personality and motivation of Nick
Metropolis and to the group of highly
capable engineers and programmers he as-
sembled at Los Alamos to help him build
the machine and make it run. The original
engineers were Dick Merwin, Howard
Parsons, Jim Richardson. Bud Demuth,
Walter Orvedahl, and Ed Klein. The im-
portance of programming aids was rec-
ognized early on. About 1953 John Jack-
son led a study of assembly languages, and
an assembler was produced, Mark Wells
and others launched the development of
the MADCAP, a high-level programming

language and compiler. This was a critical
development because it provided a conve-
nient way to communicate with the
MANIAC.

Fermi and Metropolis

Enrico Fermi had been at Los Alamos
during the war and liked it so much that he
claimed he would not have left if only the
Lab were a university. Since it wasn’t a
university, he made the best possible com-
promise by accepting a position at the
University of Chicago and spending his
summers at Los Alamos.

When he came to Los Alamos in the
summer of 1952, the MANIAC was up
and running, and it would hate been very
hard to keep Enrico from that machine.
He though the MANIAC was just wonder-
ful. He could hardly wait to get his hands
on it. I’ve told you how he loved to calcu-
late, the faster the better, and here was his
good friend Nick Metropolis with the
fastest machine in the world, offering to
introduce him to its mysteries and let him
run it himself.

Fig. 2. Function tables of the ENIAC.
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Nick must have been pleased by the
praise and interest shown by so many of
the illustrious scientists he had worked
with in wartime Los Alamos, but the
supreme accolade came from Enrico
Fermi. When you build something. what
could be more satisfying than to have one
of the world’s greatest physicists tell you
not only that it’s a great machine but that
he wants to use it. Moreover, Fermi had a
problem that was ideally suited to the
machine. He wanted to analyze the pion-
proton scattering experiments he had been
carrying on in Chicago with his col-
laborators at the new 450-MeV synchro-
cyclotron.

My connect ion  wi th  th is  s tory  i s
analogous to Nick’s except that in this case
I had built the cyclotron. I also helped
build the apparatus and carry out the
measurements. The other collaborators
were Darragh Nagle and Earl Long. on the
faculty and my graduate students. Ronald
Martin, Gaurang Yodh, and Maurice
Glicksman.

The results of our pion-proton scatter-
ing experiments had been as striking as
they were surprising. The large scattering
cross section at a specific energy indicated
the presence of a resonance. It was a major
discovery, an excited state of the proton.
We had uncovered a new particle now
known as the delta. and it attracted the
attention of the entire high-energy physics
community. In order to extract the ap-
propriate quantum numbers of the delta,
Fermi wanted to do what he called phase-
shift analysis, which tells you which quan-
tum states have the biggest scattering
amplitudes and which have the smallest.

I should mention that Fermi had a
knack of coming up with problems whose
computation matched the means avail-
able. Some years before, when  the
punched-card machines were the principal
means for computing, Fermi posed the
problem of calculating a table of atomic
masses using a semiempirical mass for-
mula he had devised on the von
Weizsacker model. Nick organized the cal-
culation and the preparation of the tables.
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Monte Carlo method is tied to first electronic computers
and the development of the atomic bomb.

Stan Ulam, Enrico Fermi,  John von Neumann, Nicolas Metropolis, Edward Teller,  Marshall Rosenbluth
Augusta Harkanyi Teller, and Arianna Rosenbluth



Jennings Bartik
Bilas



Recipe

Do this many times:
•Draw a random number x using the 
distribution f(x) between a and b 
•Save x

Create a histogram of all the x values
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Random numbers Physical random number generators

Lava-lamps
Geiger counter
Devices that combine 
      multiple events /dev/random

Pseudorandom numbers
John von Neumann proposed using the following 
method as one of the first random number 
generators. Suppose we want to create eight-
digit numbers. Begin with an eight-digit number 
X0, which we call the seed, and create the next 
integer in the sequence by removing the middle 
eight digits from X02.
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initialize vector x
seed = input(a number with 8 digits)              
for i in 1,n:
    x0 = seed * seed
    seed = take middle 8 digits of x0
    x[i] = seed

Pseudocode for von Neuman random number generator

81989672Example

81989672 ✕ 81989672
6722306314667584

30631466
30631466 ✕ 30631466
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Monte Carlo

Recipe

Do this many times:
•Draw a random number x using the distribution f(x) between a and b 
•Save x

Create a histogram of all the x values



Monte Carlo

Recipe

Do this many times:
•Draw a random number x using the distribution f(x) between a and b 
•Save x

Create a histogram of all the x values

n=10000



Monte Carlo

n=1000



Monte Carlo

n=100



Monte Carlo Rules

Nuclear reactor design
Quantum chromodynamics
Radiation cancer therapy
Traffic flow
Stellar evolution
Econometrics
Dow-Jones forecasting
Oil well exploration
VLSI design



Monte Carlo Examples

Nuclear reactor design
Quantum chromodynamics
Radiation cancer therapy
Traffic flow
Stellar evolution
Econometrics
Dow-Jones forecasting
Oil well exploration
VLSI design

Phylogeny inference
Population genetics inference
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How to calculate p

?
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How to calculate p

We know  that the area of a circle is 

�r2

r

r

Looking only at the upper right corner 
we can see a green square with side r
and we can calculate the area of the square as

As = r2

The quarter circle has the area 

Ac =
�

4
r2

So we can calculate the ratio of the two areas as 

Ac

As
=

r2

�
4 r

2
=

�

4
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How to calculate p

r

r

Ac

As
=

r2

�
4 r

2
=

�

4

d

d y

x

x

y

The goal is now to estimate the ratio of the areas.
We can devise an algorithm that draws random
coordinates from the square and marks whether the
coordinate fell into the circle or not. We can calculate 
the distance from the circle center using Pythagoras:

d =
p

(x2 + y

2)

If d is smaller than r than we know the coordinate is in 
the circle otherwise only in the square. We can now 
create an algorithm for our program.
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How to calculate p

r

r d

d y

x

x

y

// Algorithm in pseudo code
// Do many times:
//    draw x, y coordinate
//    calculate d from center
//    check whether d < r:
//       True: add 1 to circle
//       False: do nothing
//    add 1 to square
//
// print pi: ratio circle/square * 4



Our Pi estimates
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History of ⇡

223/71 < π < 22/7
Archimedes (300 BC)
using 96-side polygons

3.14285714285714283.140845070422535

History topic: A history of Pi

A little known verse of the Bible reads

And he made a molten sea, ten cubits from the one brim to the other: it was round all about, and
his height was five cubits: and a line of thirty cubits did compass it about. (I Kings 7, 23)

The same verse can be found in II Chronicles 4, 2. It occurs in a list of specifications for the great temple of
Solomon, built around 950 BC and its interest here is that it gives ! = 3. Not a very accurate value of course
and not even very accurate in its day, for the Egyptian and Mesopotamian values of 25/8 = 3.125 and "10 =
3.162 have been traced to much earlier dates: though in defence of Solomon's craftsmen it should be noted that
the item being described seems to have been a very large brass casting, where a high degree of geometrical
precision is neither possible nor necessary. There are some interpretations of this which lead to a much better
value.

The fact that the ratio of the circumference to the diameter of a circle is constant has been known for so long
that it is quite untraceable. The earliest values of ! including the 'Biblical' value of 3, were almost certainly
found by measurement. In the Egyptian Rhind Papyrus, which is dated about 1650 BC, there is good evidence
for 4  (8/9)2 = 3.16 as a value for !.

The first theoretical calculation seems to have been carried out by Archimedes of Syracuse (287-212 BC). He
obtained the approximation

223/71 < ! < 22/7.

Before giving an indication of his proof, notice that very considerable sophistication involved in the use of
inequalities here. Archimedes knew, what so many people to this day do not, that ! does not equal 22/7, and
made no claim to have discovered the exact value. If we take his best estimate as the average of his two
bounds we obtain 3.1418, an error of about 0.0002.

Here is Archimedes' argument.

Consider a circle of radius 1, in which we inscribe a regular polygon of 3  2n-1 sides, with semiperimeter bn,
and superscribe a regular polygon of 3  2n-1 sides, with semiperimeter an.

The diagram for the case n = 2 is on the right.

The effect of this procedure is to define an increasing sequence

b1 , b2 , b3 , ...

and a decreasing sequence

a1 , a2 , a3 , ...

such that both sequences have limit !.

Using trigonometrical notation, we see that the two semiperimeters

are given by

an = K tan(!/K), bn = K sin(!/K),

where K = 3  2n-1. Equally, we have

an+1 = 2K tan(!/2K), bn+1 = 2K sin(!/2K),

and it is not a difficult exercise in trigonometry to show that

(1/an + 1/bn) = 2/an+1   . . . (1)

an+1bn = (bn+1)2       . . . (2)

Archimedes, starting from a1 = 3 tan(!/3) = 3"3 and b1 = 3 sin(!/3) = 3"3/2, calculated a2 using (1), then b2
using (2), then a3 using (1), then b3 using (2), and so on until he had calculated a6 and b6. His conclusion was
that

b6 < ! < a6 .

It is important to realise that the use of trigonometry here is unhistorical: Archimedes did not have the
advantage of an algebraic and trigonometrical notation and had to derive (1) and (2) by purely geometrical
means. Moreover he did not even have the advantage of our decimal notation for numbers, so that the
calculation of a6 and b6 from (1) and (2) was by no means a trivial task. So it was a pretty stupendous feat
both of imagination and of calculation and the wonder is not that he stopped with polygons of 96 sides, but
that he went so far.

For of course there is no reason in principle why one should not go on. Various people did, including:

Ptolemy (c. 150 AD) 3.1416
Zu Chongzhi (430-501 AD) 355/113
al-Khwarizmi (c. 800 ) 3.1416
al-Kashi (c. 1430) 14 places
Viète (1540-1603) 9 places
Roomen (1561-1615) 17 places
Van Ceulen (c. 1600) 35 places

Except for Zu Chongzhi, about whom next to nothing is known and who is very unlikely to have known about
Archimedes' work, there was no theoretical progress involved in these improvements, only greater stamina in
calculation. Notice how the lead, in this as in all scientific matters, passed from Europe to the East for the
millennium 400 to 1400 AD.

Al-Khwarizmi lived in Baghdad, and incidentally gave his name to 'algorithm', while the words al jabr in the
title of one of his books gave us the word 'algebra'. Al-Kashi lived still further east, in Samarkand, while Zu
Chongzhi, one need hardly add, lived in China.

The European Renaissance brought about in due course a whole new mathematical world. Among the first
effects of this reawakening was the emergence of mathematical formulae for !. One of the earliest was that of
Wallis (1616-1703)

⇡

4
= 1� 1

3
+

1

5
� 1

7
+ ...

James Gregory
1638-1675



History of ⇡
Here is a summary of how the improvement went:

1699: Sharp used Gregory's result to get 71 correct digits
1701: Machin used an improvement to get 100 digits and the following used his methods:
1719: de Lagny found 112 correct digits
1789: Vega got 126 places and in 1794 got 136
1841: Rutherford calculated 152 digits and in 1853 got 440
1873: Shanks calculated 707 places of which 527 were correct

A more detailed Chronology is available.

Shanks knew that ! was irrational since this had been proved in 1761 by Lambert. Shortly after Shanks'
calculation it was shown by Lindemann that ! is transcendental, that is, ! is not the solution of any polynomial
equation with integer coefficients. In fact this result of Lindemann showed that 'squaring the circle' is
impossible. The transcendentality of ! implies that there is no ruler and compass construction to construct a
square equal in area to a given circle.

Very soon after Shanks' calculation a curious statistical freak was noticed by De Morgan, who found that in
the last of 707 digits there was a suspicious shortage of 7's. He mentions this in his Budget of Paradoxes of
1872 and a curiosity it remained until 1945 when Ferguson discovered that Shanks had made an error in the
528th place, after which all his digits were wrong. In 1949 a computer was used to calculate ! to 2000 places.
In this and all subsequent computer expansions the number of 7's does not differ significantly from its
expectation, and indeed the sequence of digits has so far passed all statistical tests for randomness.

We should say a little of how the notation ! arose. Oughtred in 1647 used the symbol d/! for the ratio of the
diameter of a circle to its circumference. David Gregory (1697) used !/r for the ratio of the circumference of
a circle to its radius. The first to use ! with its present meaning was an Welsh mathematician William Jones in
1706 when he states "3.14159 andc. = !". Euler adopted the symbol in 1737 and it quickly became a standard
notation.

We conclude with one further statistical curiosity about the calculation of !, namely Buffon's needle
experiment. If we have a uniform grid of parallel lines, unit distance apart and if we drop a needle of length k
< 1 on the grid, the probability that the needle falls across a line is 2k/!. Various people have tried to calculate
! by throwing needles. The most remarkable result was that of Lazzerini (1901), who made 34080 tosses and
got

! = 355/113 = 3.1415929

which, incidentally, is the value found by Zu Chongzhi. This outcome is suspiciously good, and the game is
given away by the strange number 34080 of tosses. Kendall and Moran comment that a good value can be
obtained by stopping the experiment at an optimal moment. If you set in advance how many throws there are
to be then this is a very inaccurate way of computing !. Kendall and Moran comment that you would do better
to cut out a large circle of wood and use a tape measure to find its circumference and diameter.

Still on the theme of phoney experiments, Gridgeman, in a paper which pours scorn on Lazzerini and others,
created some amusement by using a needle of carefully chosen length k = 0.7857, throwing it twice, and
hitting a line once. His estimate for ! was thus given by

2  0.7857 / ! = 1/2

from which he got the highly creditable value of ! = 3.1428. He was not being serious!

Very soon after Shanks' calculation a curious statistical freak was noticed by De Morgan, who found that in the last of 707 
digits there was a suspicious shortage of 7's. He mentions this in his Budget of Paradoxes of 1872 and a curiosity it remained 
until 1945 when Ferguson discovered that Shanks had made an error in the
528th place, after which all his digits were wrong. In 1949 a computer was used to calculate π to 2000 places. In this and all 
subsequent computer expansions the number of 7's does not differ significantly from its expectation, and indeed the 
sequence of digits has so far passed all statistical tests for randomness.

Buffon's needle experiment. If we have a uniform grid of parallel lines, unit distance apart and if we drop a needle of length k 
< 1 on the grid, the probability that the needle falls across a line is 2k/π. Various people have tried to calculate π by 
throwing needles. The most remarkable result was that of Lazzerini (1901), who made 34080 tosses and got
π = 355/113 = 3.1415929
which, incidentally, is the value found by Zu Chongzhi. This outcome is suspiciously good, and the game is given away by the 
strange number 34080 of tosses. Kendall and Moran comment that a good value can be obtained by stopping the 
experiment at an optimal moment. If you set in advance how many throws there are to be then this is a very inaccurate way 
of computing π. Kendall and Moran comment that you would do better to cut out a large circle of wood and use a tape 
measure to find its circumference and diameter.



In the State of Indiana in 1897 the House of Representatives unanimously passed a Bill introducing 
a new mathematical truth:

Be it enacted by the General Assembly of the State of Indiana: It has been found that a circular 
area is to the square on a line equal to the quadrant of the circumference, as the area of an 
equilateral rectangle is to the square of one side. (Section I, House Bill No. 246, 1897)

The Senate of Indiana showed a little more sense and postponed indefinitely the adoption of the 
Act!

⇡



Using Monte Carlo to Approximate an Integral

• Suppose we want to evaluate

∫ b

a
f(x) dx

• If f(x) ≥ 0 for a ≤ x ≤ b then we know that this integral represents the
area under the curve y = f(x) and above the x−axis.

• Standard deterministic numerical integration rules approximate this integral
by evaluating the integrand f(x) at a set number of points and multiplying
by appropriate weights.

– For example, the midpoint rule is
∫ b

a
f(x) dx ≈ f

(

a + b

2

)

(b − a)

– Simpson’s rule is
∫ b

a
f(x) dx ≈

b − a

6

[

f(a) + 4f

(

a + b

2

)

+ f(b)
]

Using Monte Carlo to approximate an integral





Bounding box

M

a b

y=f(X)

X

Area

Ab = M (b-a)

Area under curve
#inside

#bounding box
Ab

We need to be able to calculate 
f(x) for any possible x with the 
range a and b.

We draw 2 random values, one 
for x and one for y. then evaluate 
f(x), if y < f(x) then we count this 
as #inside. The #bounding box is 
the total number of draws.

Acceptance-Rejection method



• How to choose the bounding box? It need to be big enough to contain the 
whole function. But if it is too big then we draw often random numbers above 
the function. If the bounding box is much larger than the area under the curve 
then we need many draws (or steps) to get a good accuracy.

• We need to draw two random numbers and ‘discard’ the draws that are above 
the function.

Problem with the Acceptance-Rejection method



a b

Usual Monte Carlo Integration

A =

Z b

a
f(x)dx

y = f(x)

x

B = (b� a)f(c)

B
A

Find                and we are done!f(c)

There must be an            that satisfies
A = B.

f(c)

f(c) =

1

n

nX

i=1

f(xi)

where xi are drawn uniformly between a and b



Monte Carlo Integration Algorithm

• Draw many xi between the boundaries a and b
• Calculate the average x ̄of the collected xi 

• Calculate the area as (b-a) x ̄

Evaluation of Monte Carlo error
We will discuss how to calculate error at the end of the 
semester when we again talk about Monte Carlo.


