
for example, check out: http://www.programiz.com/cpp-programming/pointers [the following text is an excerpt of
this website]

#include <iostream>
using namespace std;

int main()
{
 int var1 = 3;
 int var2 = 24;
 int var3 = 17;
 cout << &var1 << endl;
 cout << &var2 << endl;
 cout << &var3 << endl;
}

Output

0x7fff5fbff8ac
0x7fff5fbff8a8
0x7fff5fbff8a4

Example if Pointer values and pointer dereferencing:

Lecture on pointers, references, and arrays and vectors

pointers

#include <iostream>
using namespace std;
int main() {
 int *pc
 int c;

 c = 5;
 cout << "Address of c (&c): " << &c << endl;
 cout << "Value of c (c): " << c << endl << endl;

 pc = &c; // Pointer pc holds the memory address of variable c
 cout << "Address that pointer pc holds (pc): "<< pc << endl;
 cout << "Content of the address pointer pc holds (*pc): " << *pc << endl << endl;

 c = 11; // The content inside memory address &c is changed from 5 to 11.
 cout << "Address pointer pc holds (pc): " << pc << endl;
 cout << "Content of the address pointer pc holds (*pc): " << *pc << endl << endl;

 *pc = 2;
 cout << "Address of c (&c): " << &c << endl;
 cout << "Value of c (c): " << c << endl << endl;

 return 0;
}

Output

Address of c (&c): 0x7fff5fbff80c
Value of c (c): 5

Address that pointer pc holds (pc): 0x7fff5fbff80c
Content of the address pointer pc holds (*pc): 5

Address pointer pc holds (pc): 0x7fff5fbff80c
Content of the address pointer pc holds (*pc): 11

Address of c (&c): 0x7fff5fbff80c
Value of c (c): 2

References are often confused with pointers but three major differences between references and pointers are:

C++ References vs Pointers

You cannot have NULL references. You must always be able to assume that a reference is connected to a
legitimate piece of storage.

Once a reference is initialized to an object, it cannot be changed to refer to another object. Pointers can
be pointed to another object at any time.

A reference must be initialized when it is created. Pointers can be initialized at any time.

We declare a variable

int i = 17;

We can now declare reference variables for i as follows.

int& r = i;

Read the & in these declarations as reference. Thus, read the first declaration as “r is an integer reference
initialized to i” and read the second declaration as “s is a double reference initialized to d.”. Following example
makes use of references on int and double:

#include <iostream>

using namespace std;

int main () {
 // declare simple variables
 int i;
 double d;

 // declare reference variables
 int& r = i;
 double& s = d;

 i = 5;
 cout << "Value of i : " << i << endl;
 cout << "Value of i reference : " << r << endl;

 d = 11.7;
 cout << "Value of d : " << d << endl;
 cout << "Value of d reference : " << s << endl;

 return 0;
}

When the above code is compiled together and executed, it produces the following result:

Value of i : 5
Value of i reference : 5
Value of d : 11.7
Value of d reference : 11.7

References are usually used for function argument lists and function return values. So following are two
important subjects related to C++ references which should be clear to a C++ programmer:

Concept Description

References as
parameters

C++ supports passing references as function parameter more safely than
parameters.

Reference as return
value

You can return reference from a C++ function like a any other data type can be
returned.

References and Pointers comparison:

#include <iostream>
// using references
void swapRef(int &a, int &b) {
 int temp = 0;
 temp = a;
 a = b;
 b = temp;
 return;
}
// using Pointers
void swapPoint(int *a, int *b){
 int temp = 0;
 temp = *a;
 *a = *b;
 *b = temp;
 return;
}
// example of using pointers or references
// result is the same
int main(void){
 int a = 10;
 int b = 20;
 std::cout<< "a = "<< a <<"\n"<<"b = "<<b<<"\n";
 swapRef(a,b);
 std::cout<< "After swapRef()";
 std::cout<< "a = "<< a <<"\n"<<"b = "<<b<<"\n";
 a = 10; b = 20;
 swapPoint(&a,&b);
 std::cout<< "After swapPoint()";
 std::cout<< "a = "<< a <<"\n"<<"b = "<<b<<"\n";
 return 0;
}

[see http://duramecho.com/ComputerInformation/WhyHowCppConst.html]

There are many uses and usages of const [it means stay constant do not change]

An obvious example:

To const or not to const

const int a= 5;
cout << a << endl;
a = 6; // <== this will not compile! ERROR! You shalt not change a

You can use const for pointers, but there are a few difficulties:

const int * p;
int const * q;
int * const r;
int const * const s;

Confusing, right? Here the explanation.

const int * p;

Declares that p is a variable pointer to a const integer. For example

const int a=5;
const int *p;
p = NULL; // p points to nothing
p = &a; // p points to a

in fact on a mac this seems to be equivalent to int * p and is also equivalent to int const * q and also int *
const r sugggests to have a constant pointer to a variable integer, ti seems that on mac all these lead to the
same answers and also compile. The only difference is

int const * const s;

it is a const pointer to a const value; this only compiles using something like this:

const int a=5;
int const * const p = &a;

You can protect return values of function against change using

const char *function() { return "Some text"; }

You can use const in arguments, here it becomes difficult: For example:

void addOne(int a) { a = a + 1;}
int a = 5;
addOne(a); // a does not change

makes a copy of a and then adds one, but the results gets lost. We can use a reference:

void addOne(int &a) { a = a + 1;}
int a = 5;
addOne(a)
cout << a << endl; //prints 6

Now a gets changed, if we do not want that a gets changed then we can use const

void addOne(const int &a) { a = a + 1;} /COMPILER ERROR

This forces us to make sure that we do not manipulate objects that should be left alone.

Within classes we can add const after method definition to make sure that the method cannot change the
class object it self.

class Class2 {
 void Method1() const;
 int Membervariable1;
}

For example we have encountered this in the operator methods: Look at our definition of operator+, correctly
we would want to make sure that an operation a+b does not change or b

const Rectangle Rectangle::operator+(const Rectangle &other) const {
 Rectangle newr = *this;
 newr.side = side + rhs.side;
 newr.height = height + rhs.height;
 return newr;
}

we know about

double a;
a = 5;

Arrays

if we want to get a list of values and use them more like we know from math then we can define an array

double a[10];
for (int i=0;i<10;i++)
{
 a[i] = 5+i;
}

or easier:

int a[3] = {4,5,6};

or even easier:

int a[] = {4,5,6,7};

We can also define 2D-arrays:

int b[2][3] = {{1,2,3},{4,5,6}};

But what about dynamic arrays, the ones above are fixed length.

Use the keywords new and delete.

int * myArray = new int[Size] //gives you a contigous memory block

once your done with it you MUST delete it:

delete [] myArray;

if you use new to allocate for a single memory cell

int * a = new double;
//then you need this to delete:
delete a;

if you use new to allocate multiple memory cells

Allocation of memory on the fly

int * a = new double[SIZE];
//then you need this to delete:
delete [] a;

Now this is all very combersome, and you should probably not use your own arrays or Array classes.

Vector class is an example of the STL

Standard Template Library (STL)

#include <iostream>
#include <vector>
using namespace std;

int main()
{
 // create a vector to store int
 vector<int> vec;
 int i;

 // display the original size of vec
 cout << "vector size = " << vec.size() << endl;

 // push 5 values into the vector
 for(i = 0; i < 5; i++){
 vec.push_back(i);
 }

 // display extended size of vec
 cout << "extended vector size = " << vec.size() << endl;

 // access 5 values from the vector
 for(i = 0; i < 5; i++){
 cout << "value of vec [" << i << "] = " << vec[i] << endl;
 }

 // use iterator to access the values
 vector<int>::iterator v = vec.begin();
 while(v != vec.end()) {
 cout << "value of v = " << *v << endl;
 v++;
 }

 return 0;
}

