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(x1, y1), (x2, y2), ..., (xn, yn)

If we have a finite set of points

we want to construct a polynomial that represents the points and also the 
points between the known points. this polynomial approximates the 
unknown function that generated the data points. We could use also 
polynomials to approximate more complicated functions f(x). 

In calculus, when you constructed a Taylor polynomial this was a 
polynomial which approximated another function. 
The way we ask the polynomial to represent our data results in different 
polynomials. 



The problem we are going to consider initially is to find an interpolating polyno-
mial for a set of data (xi, yi):

Given n + 1 distinct points

(x1, y1), (x2, y2), · · · (xn+1, yn+1)

find a polynomial of degree n, say pn, such that

pn(xi) = yi, for i = 1, 2, . . . , n + 1

• This means that the graph of the polynomial passes through our n+1 distinct
data points.

• The general polynomial of degree n looks like

a0 + a1x + a2x
2 + · · · + an−1x

n−1 + anx
n

• It can be proved that there is a unique polynomial which satisfies our problem.



• In the first figure we have two data points so we find the linear polynomial
which passes through these two points.

• In the second figure we have three data points so we find the quadratic
polynomial which passes through these three points.

• In the third and fourth figures we have four and five points so we find a cubic
and a quartic, respectively.



What do we want to accomplish?

1. First, we want to determine an efficient way to determine the polynomial,
i.e., determine the coefficients a0, a1, · · · , an.

2. Once we have determined the coefficients, we want to determine how to
efficiently evaluate the polynomial at a point.

3. If we decide to add points to our data set, we would like to not have to
start our calculation from scratch. Since the polynomial is unique we choose to
evaluate it any way that works and is efficient.

4. We want to view this problem as being analogous to finding a polynomial
which interpolates a given function at a set {xi}.

5. We want to decide if this is a good approach to interpolating a set of data
or a function. If not, we want to look at alternative ways to interpolate.



Some Simple Examples

• As a first example, find the linear polynomial (i.e., p1 ) which passes through
the two points (1,−5), (5, 3). Clearly if p1 must pass through these two
points we have

p1(1) = −5 p1(5) = 3

So if p1 = a0 + a1x we must satisfy

a0 + a1(1) = −5 a0 + 5a1 = 3

Solving these two equations we get a0 = −7 and a1 = 2 so we have the
polynomial p1 = 2x − 7.



• As a second example, find the quadratic that passes through the 3 points
(1, 10), (2, 19), (-1,-14). Clearly if p2 = a0 + a1x + a2x2 must pass through
these three points we have

p2(1) = 10 p2(2) = 19 p2(−1) = −14

or equivalently we must satisfy

a0+a1(1)+a2(1)2 = 10 a0+2·a1+(2)2a2 = 19 a0+a1(−1)+a2(−1)2 = −14

Solving these three equations we get the polynomial p2 = −x2 + 12x − 1.

• As you can see, if we proceed in this manner then to find a polynomial of
degree n that passes through the given n + 1 points we have to solve n + 1
linear equations for the n + 1 unknowns a0, a1, . . . , an.

• However, there are more efficient ways to do this.

• There are basically two main efficient approaches for determining the inter-
polating polynomial. Each has advantages in certain circumstances.

• Since we are guaranteed that we will get the same polynomial using different
approaches (since the polynomial is unique) it is just a question of which is
a more efficient implementation.



Lagrange Form of the Interpolating Polynomial

• To motivate this form of the interpolating polynomial, let’s revisit one of our
examples.

• We found that the quadratic interpolating polynomial which interpolates the
points (1, 10), (2, 19), (-1,-14) is p2 = −x2 + 12x − 1.

• Instead of writing this polynomial in terms of the monomials 1, x, x2 (i.e.,
p = a0 · 1 + a1x + a2x2) lets rewrite it as

p2 = 10 ∗ L1(x) + 19L2(x) − 14L3(x)

where Li(x), i = 1, 3 are quadratic polynomials which have the properties

L1(2) = L1(−1) = 0, L1(1) = 1

L2(1) = L2(−1) = 0, L2(2) = 1

L3(1) = L3(2) = 0, L3(−1) = 1



If we can do this, then clearly p2(1) = 10, p2(2) = 19 and p2(−1) = −14
and once we have the Li(x) we have found our interpolating polynomial,
just not reduced to its simplest form.

• At first it seems that we have traded finding one quadratic polynomial for
finding 3 others. However, let’s look at what Li(x), i = 1, 3 are in our
example.

L1(x) =
(x − 2)(x + 1)

(1 − 2)(1 + 1)
=

(x − 2)(x + 1)

−2

• Clearly because we have the factor (x − 2) in the numerator, L1(2) = 0.
Similarly the factor (x + 1) in the numerator makes L1(−1) = 0. When we
evaluate the numerator at x = 1 we get the denominator which is just -2 so
it satisfies L1(1) = 2.

• Similarly

L2(x) =
(x − 1)(x + 1)

(2 − 1)(2 + 1)
=

(x − 1)(x + 1)

3

1



and

L3(x) =
(x − 1)(x − 2)

(−1 − 1)(−1 − 2)
=

(x − 1)(x − 2)

6

• The numerator is easily determined because for Li we simply use factors of
(x − xj) for j ̸= i.

• How do we get the denominator? Because we want Li(xi) = 1, we simply
choose the denominator to equal the numerator evaluated at xi.

• For our problem, we can show that upon simplification we get the same
polynomial as before −x2 + 12x − 1

p2 = 10
(x − 2)(x + 1)

−2
) + 19

(x − 1)(x + 1)

3
− 14

(x − 1)(x − 2)

6

p2 =
(

− 5x2 + 5x + 10
)

+
19

3

(

x2 − 1
)

−
7

3

(

x2 − 3x + 2
)

p2 =
(−15 + 19 − 7

3

)

x2+
(15 + 21

3

)

x+
(30 − 19 − 14

3

)

= −x2+12x−1



Given n + 1 distinct points

(x1, y1), (x2, y2), · · · (xn+1, yn+1)

The Lagrange form of the interpolating polynomial is

pn =
n+1
∑

i=1

yiLi(x) ,

where

Li(x) =
(x − x1)(x − x2) · · · (x − xi−1)(x − xi+1) · · · (x − xn+1)

(xi − x1)(xi − x2) · · · (xi − xi−1)(xi − xi+1) · · · (xi − xn+1)

The important properties of Li(x) are

1. Li(xj) = 0 for j ̸= i

2. Li(xi) = 1



Newton Form of the Interpolating Polynomial

• This approach to determining the interpolating polynomial using divided
differences and allows adding data without starting over.

• When we first looked at writing an interpolating polynomial we wrote it as
c1+c2x+c3x

2+ · · · cn+1x
n in terms of the monomials 1, x, x2, . . . , xn. This

required the solution of n + 1 linear equations.

• Recall that when we wrote the Lagrange form of say the third degree inter-
polating polynomial we wrote it in terms of sums of cubic polynomials. The
Newton form takes a different approach.

• The Newton form of the line passing through (x1, y1), (x2, y2) is

p1(x) = a1 + a2(x − x1)

• The Newton form of the parabola passing through (x1, y1), (x2, y2), (x3, y3)
is

p2(x) = a1 + a2(x − x1) + a3(x − x1)(x − x2)



• The general form of the Newton polynomial passing through (xi, yi), i =
1, . . . , n + 1 is

pn(x) = a1+a2(x−x1)+a3(x−x1)(x−x2)+· · ·+an+1(x−x1)(x−x2)·(x−xn)

• As in the case of the Lagrange form of the interpolating polynomial we first
find the coefficients ai, i = 1, . . . , n = 1 and then we use this formula to
evaluation pn at a point.



Runge’s Example

• Consider the function

f(x) =
1

1 + 25x2
− 1 ≤ x ≤ 1

which we want to interpolate (using only function values) with an increasing
number of points. We interpolate with evenly spaced points. The black
curve represents the function.
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• As you can see, the interpolant gets more “wiggles” in it as it is required to
interpolate more points.

• It is for this reason that one should not use a single polynomial to interpolate
a lot of data.

• The general rule is that

HIGH DEGREE POLYNOMIAL INTERPOLATION SHOULD BE AVOIDED

• What can we do instead?

• We use something called piecewise interpolation.

• When a graphing program plots a function like we did in the previous exam-
ples it connects closely spaced points with a straight line. If the points are
close enough, then the result looks like a curve to our eye. This is called
piecewise linear interpolation.



Examples of Piecewise Functions

Piecewise Constant Function
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Continuous Piecewise Linear Function
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We will be interpolating data using a piecewise linear function on each subinterval
so the linear function defined on the interval [xi−1, xi] and the function defined
on [xi, xi+1] will match up at xi; i.e., we are using continuous, piecewise linear
functions.



Below we see some examples of a piecewise linear interpolant to sin x2 on
(-2,2). In each plot we are using uniform subintervals and doubling the num-
ber of subintervals from one plot to the next.
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Below we see some examples of piecewise linear interpolation for Runge’s ex-
ample. Note that this form of interpolation does not have the “wiggles” we
encountered by using a higher degree polynomial.
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Piecewise Linear Interpolation

• Assume that we are given (x1, y1), (x2, y2), . . ., (xn+1, yn+1). We want to
construct the piecewise linear interpolant.



x1 x2 x3 xi xi+1 xn xn+1

• We divide our domain into points xi i = 1, . . . , n + 1

• The linear interpolation on the interval [xi, xi+1] is just

Li(x) = ai + bi(x − xi)

where

ai = yi yi+1 = yi + bi(xi+1 − xi) ⇒ bi =
yi+1 − yi

xi+1 − xi

• Thus our piecewise linear interpolant is given by

L(x) =

⎧

⎪

⎪
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⎪
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⎪

⎪

⎨

⎪

⎪
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⎪

⎪

⎪

⎪

⎪

⎪

⎩

L1(x) if x1 ≤ x ≤ x2

L2(x) if x2 ≤ x ≤ x3

... ...

Li(x) if xi ≤ x ≤ xi+1

... ...

Ln(x) if xn ≤ x ≤ xn+1



• Note that L(x) is continuous but not differentiable everywhere.

Example

Determine the piecewise linear interpolant to sin x on [0,π] found by using 2
equal subintervals; then evaluate it at the points π

3
, 3π

5
. Compute error.

• Our intervals are [0, π
2
] and [π

2
, π].

• On the first interval the coefficients are

a1 = sin 0 = 0 b1 =
sin π

2
− sin 0

π
2
− 0

=
2

π

so we have L1 = 0 +
2

π
(x − 0) =

2x

π
.

• On the second interval the coefficients are

a2 = sin
π

2
= 1 b2 =

sin π − sin π
2

π − π
2

=
0 − 1

π
2

= −
2

π



which gives L2 = 1 −
2

π
(x −

π

2
).

• The point π
3

is in the first interval so

L1(x) = a1 + b1(x − x1) ⇒ L1(
π

3
) = 0 +

2

π
(
π

3
− 0) =

2

3
The actual value of sin π

3
is 0.866025 so our error is approximately 0.2. The

error is fairly large because the length of our subinterval is large π
2
≈ 1.57.

• Now the point 3π
5

is in the second interval so

L2(x) = a2 + b2(x − x2) ⇒ L2(
3π

5
) = 1 −

2

π
(
3π

5
−

π

2
) =

4

5

The actual value of sin 3π
5

is 0.950157 so our error is approximately 0.151.



Implementing Piecewise Linear Interpolation

• Given the data (xi, yi), i = 1, 2, . . . , n+1, we can determine the coefficients
ai, bi, i = 1, . . . , n on each of the n subintervals by the formulas

ai = yi bi =
yi+1 − yi

xi+1 − xi
, i = 1, 2, . . . , n

This can be done once and stored just like we did for the nth degree inter-
polating polynomial.

• Unlike the case when we had a single nth degree polynomial, when we want
to evaluate our piecewise linear interpolant at some point x then we have
to decide which formula Li(x) we need to use. That is, we have to decide
the subinterval [xi, xi+1] so that x ∈ [xi, xi+1]. Once we do this, then we
simply use the formula ai + bi(x− xi) where our coefficients ai, bi

are known.

• Before we look at the actual implementation, lets look at piecewise quadratic
interpolation because it brings up some additional issues.



Piecewise Quadratic Interpolation

• We know that to determine the quadratic interpolation on an interval we
need 3 conditions so we have to add another point.

• This is possible to do if we are approximating a given function by this piece-
wise quadratic function since we could just choose the midpoint.

• However, if we have discrete data, we might not be able to add another
point. In that case we must have an even number of intervals and then we
choose the intervals [xi, xi+2] to perform the quadratic interpolation.

• For simplicity we will take the approach that we are going to approximate a
given function so that we can generate another point in the interval and we
choose the midpoint.



❞ ❞ ❞ ❞ ❞ ❞ ❞ ❞

x1 x2 x3 x4 x5 x2(i−1)+1 x2n−1x2n x2n+1

INT 1 INT 2 INT i INT n

• We assume that we have n intervals and 2n + 1 points labeled xi, i =
1, . . . , 2n + 1. For example, the intervals are

[x1, x3], [x3, x5], · · · [x2n−1, x2n+1]

• Then using the Newton form of the interpolating polynomial we have for the
interval [x1, x3] with x2 the midpoint

Q1(x) = a1 + b1(x − x1) + c1(x − x1)(x − x2)

so when we evaluate Q1(x1), Q1(x2), and Q1(x3) we get

Q1(x1) = y1 ⇒ a1 = y1

Q1(x2) = y2 ⇒ y2 = y1 + b1(x2 − x1) ⇒ b1 =
y2 − y1

x2 − x1

= 2
y2 − y1

∆x1

Q1(x3) = y3 ⇒ y3 = y1+b1∆x1+c1∆x1

(∆x1

2

)

⇒ c1 = 2
y3 − y1 − b1∆x1

∆x2
1

where ∆x1 = x3 − x1.

• Thus our piecewise quadratic interpolant on the entire region [x1, x2n+1] is
given by a quadratic on each of the n intervals:

Q(x) =

⎧
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⎪

⎪

⎪

⎪

⎩

Q1(x) if x1 ≤ x ≤ x3

Q2(x) if x3 ≤ x ≤ x5

... ...

Qi(x) if xi ≤ x ≤ xi+2

... ...

Qn(x) if x2n−1 ≤ x ≤ x2n+1

• Note that as in the case of the piecewise linear interpolant, Q(x) is contin-
uous everywhere but not differentiable everywhere.

• So one thing that is different from the linear case is the relationship between
the number of intervals and the number of points.



where ∆x1 = x3 − x1.

• Thus our piecewise quadratic interpolant on the entire region [x1, x2n+1] is
given by a quadratic on each of the n intervals:

Q(x) =
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Q1(x) if x1 ≤ x ≤ x3

Q2(x) if x3 ≤ x ≤ x5

... ...

Qi(x) if xi ≤ x ≤ xi+2

... ...

Qn(x) if x2n−1 ≤ x ≤ x2n+1

• Note that as in the case of the piecewise linear interpolant, Q(x) is contin-
uous everywhere but not differentiable everywhere.

• So one thing that is different from the linear case is the relationship between
the number of intervals and the number of points.


