ISC-3133

Introduction

to Scientific Computing
using C++

Professor

Department of Scientific Computing

Office: 150-T Dirac Science Library
Phone: (850) 559 9664

Email: beerli at fsu dot edu

Web: http:/people.sc.fsu.edu/~pbeerli

/% push dates to agree with a most recent sample date at endTime and oldest sample date i
/% will fail if used on contempory samples #/

void CoalescentTree::pushTimesBack(double startTime, double endTime) {

tree<Node>: :iterator it, jt;

double presentTine = getPresentTine();
 (startTime < endTime) {

// STRETCH OR SHRINK ///////1/1/1/]

This is how scientists see the world.
© 275

Course Description:

This course introduces you to the science of computations. Algorithms for standard
problems in computational science are presented. The basics of the object-oriented
programming language C++ are taught to facilitate the implementation of algorithms.

Course Objectives:
® |dentify the components of scientific computing;
® |dentify standard problems in scientific computing;
® |mplement basic algorithms for standard problems in computational science
using the programming language Java.
® Write, debug, and verify computer codes;
e Output results of computer simulations on a meaningful manner.
Grading Policy:
The student’s grade for the course will be based upon classwork, homework, and a
final capstone project. This work is weighted as follows:
o Classwork/Quizzes (weekly) - 10%
® Assignments (weekly to biweekly: description, code) - 50%
e Capstone Project (project description, code, presentation) - 40%

Contents

|. Components of Scientific Computing

Il. A simple example (actually two) - Using a Monte Carlo approach to
approximate problems
1. UNIX basics
2. Netbeans IDE: an integrated development environment for C++
programming
3. Introduction to C++
4. Algorithm development
5. Program testing and documentation
6. Visualization and analysis of results

Ill. Solving a non-linear equations
1. Description of problem and some simple algorithms
2. Iterative methods, required accuracy of result
3. Implementation of the Bisection method
4. Program testing and documentation

IV.Object oriented programming concepts in detail
using the non-linear equation problem and implementing more methods
1. Encapsulation
2. Inheritance
3. Polymorphism
4. Abstract classes and datatypes

<

Operations on vectors and matrices

1. Development of general functionality that is usable in many places
2. Vector and Matrix operations

3. Vector norms

4. Concurrency and parallel processing of such calculations using C++

We have a total of 17 weeks of instruction,
we will spend about two weeks per topic.

VI. Polynomial interpolation of data
1. Description of problems and (biological) applications
2. Algorithms: Lagrangian interpolation in detail
3. Implementation to fit a set of data
4. Piecewise interpolation
5. ion and visualization of of pi

interpolation

VII.Solving ordinary differential equations systems
1. Description of problem: Lotka-Volterra Predator-Prey system
2. Algorithms
3. How to use functions from other libraries
4. How to assess correctness of program
5. Visualization of results

VIII. Markov chain Monte Carlo method
1. Description of method
2. Example application
3. Implementation
4. Testing and visualization of results

IX.Capstone project presentation

Computational science [or Scientific Computing]

From Wikipedia, the free encyclopedia /1 o 08

Not to be confused with computer science.

Computational science (or scientific computing) is the field of study concerned with constructing mathematical models and
quantitative analysis techniques and using computers to analyse and solve scientific problems. In practical use, it is typically the
application of computer simulation and other forms of computation to problems in various scientific disciplines.

The field is distinct from computer science (the study of computation, computers and information processing). It is also different from
theory and experiment which are the traditional forms of science and engineering. The scientific computing approach is to gain
understanding, mainly through the analysis of mathematical models implemented on computers.

Scientists and engineers develop computer programs, application software, that model systems being studied and run these programs
with various sets of input parameters. Typically, these models require massive amounts of calculations (usually floating-point) and are
often executed on supercomputers or distributed computing platforms.

Numerical analysis is an important underpinning for techniques used in computational science.

Computer Science

Computer science or computing science (sometimes abbreviated CS) is the study of the theoretical
foundations of information and ¢ ation, and of practical techniques for their implementation and
application in computer systems.[1][2][3][4] It is frequently described as the systematic study of
algorithmic processes that create, describe, and transform information.

Applications of computational science

Problem domains for computational science/scientific computing include:

Numerical simulations

Numerical simulations have different objectives depending on the nature of the task being simulated:

Model fitting and data analysis
= Appropriately tune models or solve equations to reflect observations, subject to model ints (e.g. oil ion
= Use graph theory to model networks, especially those connecting individuals, organizations, and websites.

A

= Reconstruct and understand known events (e.g... earthquake, tsunamis and other natural disasters). China
= Predict future or unobserved situations (c.g.. weather, sub-atomic particle behavior). Europe
Japan
Oceania
South America B
Southeast Asia
USA
Freq
0.08
g,
[P 0.06
Temperature(F) For Sun Jan 05 2014 4PM EST N
@, S Jan 05 2018 21 o,
V National Digital Forecast Database
16z issuance Graphic created-Jan 05 11:066 EST 0.04
0.02
0.00+
0.0 0.05 0.10
[¢]
e 1
1998 2000 2002 2004 2006 2008
Figure 2. Genealogy of 2165 influenza A (H3N2) viruses sampled from 1998 to 2009. Each point represents a sampled virus sequence, and
the color of the point shows the location where it was sampled. Samples are explicitly dated on the x-axis. Tracing a vertical line gives a
contemporaneous cross-section of virus isolates. The genealogy is sorted so that lineages that leave more descendants are placed higher on the y-
axis than other, less successful lineages. This sorting places the trunk along a rough diagonal, and it places lineages that are more genetically similar
to the trunk higher on the y-axis than lineages that are farther away from the trunk. The tree shown is the highest posterior tree generated by the
Markov chain Monte Carlo (MCMC) procedure implemented in the software program Migrate v3.0.8 [14,201.
doi:10.1371/journal.ppat.1000918.g002
Computational optimization
Main article: Mathematical optimization
= Optimize known scenarios (e.g., technical and front-end Analysis of
mathematical - 7\
[models
Invention and
development of
new computational A

algorithms

Analysis of
computational
algorithms

Implementation
of computational
algorithms

User-friendly
presentation of
solutions

The universe of scientific computing/computational science

in this course,

¢ we are mainly interested in implementing computational algorithms.
¢ we will use C++ to implement these algorithms
¢ we will learn the basics of C++ in the context of basic methods in scientific computing

such as b

% approximate integrals: / f (;Ij) dx
a

% solving a single nonlinear equation, e.g. find x such that r=8Nnc

y=mx+b

% interpolating or fitting data, e.g. find a line

% vector and matrix operations Ar = g’

% solving simple differential equation, numerically % = e_gt, y(O) =Y

e We will visualize some of the results with GNUPLOT or other visualization methods.

HISTORY

Bjarne Stroustrup, creator of C++

Bjarne Stroustrup, a Danish and British trained computer scientist, began his work on "C with Classes” in 1979.[4] The idea of creating a new
language originated from Stroustrup's experience in programming for his Ph.D. thesis. Stroustrup found that Simula had features that were
very helpful for large software development, but the language was too slow for practical use, while BCPL was fast but too low-level to be
suitable for large software development.When Stroustrup started working in AT&T Bell Labs, he had the problem of analyzing the UNIX
kernel with respect to distributed computing. Remembering his Ph.D. experience, Stroustrup set out to enhance the C language with Simula-
like features.[9] C was chosen because it was general-purpose, fast, portable and widely used. Besides C and Simula, some other languages
that inspired him were ALGOL 68,Ada, CLU and ML.At first, the class, derived class, strong typing, inlining, and default argument features
were added to C via Stroustrup's "C with Classes" to C compiler, Cpre.[10]

In 1983, the name of the language was changed from C with Classes to C++ (++ being the increment operator in C). New features were
added including virtual functions, function name and operator overloading, references, constants, user-controlled free-store memory control,
improved type checking, and BCPL style single-line comments with two forward slashes (//), as well as the development of a proper compiler
for C++, Cfront. In 1985, the first edition of The C++ Programming Language was released, providing an important reference to the language,
as there was not yet an official standard.[| 1] The first commercial implementation of C++ was released in October of the same year.[2]
Release 2.0 of C++ came in 1989 and the updated second edition of The C++ Programming Language was released in 1991.[13] New features
included multiple inheritance, abstract classes, static member functions, const member functions, and protected members. In 1990, The
Annotated C++ Reference Manual was published. This work became the basis for the future standard. Late feature additions included templates,
exceptions, namespaces, new casts, and a Boolean type.

As the C++ language evolved, the standard library evolved with it. The first addition to the C++ standard library was the stream 1/O library
which provided facilities to replace the traditional C functions such as printf and scanf. Later, among the most significant additions to the
standard library, was a large amount of the Standard Template Library.

It is possible to write object oriented or procedural code in the same program in C++.This has caused some concern that some C++
programmers are still writing procedural code, but are under the impression that it is object oriented, simply because they are using C++.
Often it is an amalgamation of the two.This usually causes most problems when the code is revisited or the task is taken over by another
coder[14]

C++ continues to be used and is one of the preferred programming languages to develop i jcations.[15]

Unix

Operating system
Multitasking
Multi-user

1969

AT&T

Running on PDP-7

ORACLE
SOLARIS

other application programs

X-Windows

application programs metacharacters,

variables

nroff

shells

bash

creates virtual C computer

assemblers;
compilers,
linkers

interface to core
OS services

System call
interface

core of os

system libraries

Filesystem and a
suite of commands,
libraries, and
system calls

Conceptual Architecture of UNIX SYSTEMS

Evolution of Unix and Unix-like OS

1969 1088

1971% 1973 19711973

19748 1978 197410 1675

1978 1078
1979 979
1980 1980
1981 1981
1082 1082
1083 1083
1984 1084
1585 985
1088 1986
1987 1967
1988 1088
1089 1989
190 1900
1991 1991
1882 1902
1993 1909
1834 1904
1995 1995
1996 1996
1997 1997
1998 1998
1999 1999
2000 2000
2001102004 2001102004

http://academic.udayton.edu/SaverioPerugini/courses/cps346/lecture_notes/UNIXphilo.html From Wikipedia
Linux
Unix-like free Operating system
1991 ~ Desktop (KDE, Gnome, XFCE)
Linus Tovalds & many others
Linux distribution Window Manager GUI
e Unix-like operating system based on "Linux kernel"
Used by all of world top 10 Supercomputers(June, 2011) X Window System / X11
ubuntu® .
epian CLI/ Shell
p— \ ™
= A O redhat Console
inﬁb Kernel
CentOS Hardware Hardware

openSUSE"

Remote Access

Windows Linux/Mac
Login putty ssh
Copy files winscp scp
Check availability ping ping

Free download from

£

PuTTY

putty
http://www.chiark.greenend.org.uk/~sgtatham/putty/

By

*Configuration http://sc.tamu.edu/help/access/windows.php
winscp
http://winscp.net/

A UNIX command line consists of the name of a UNIX command (actually the "command" is the name
of a built-in shell command, a system utility or an application program) followed by its

"arguments" (options and the target filenames and/or expressions). The general syntax for a UNIX
command is

$ command -options targets

Here command can be though of as a verb, options as an adverb and targets as the direct
objects of the verb. In the case that the user wishes to specify several options, these need not always be
listed separately (the options can sometimes be listed altogether after a single dash).

nagal:gugus>echo "Basic UNIX commands"
Basic UNIX commands

nagal:gugus>1ls

nagal:gugus>1ls -la

total @
drwxr-xr-x+

2 beerli staff 68 Jan 7 09:51

drwxr-xr-x+ 128 beerli staff 4352 Jan 7 09:51 ..
nagal:gugus>ls .
nagal:gugus>1ls ..

#nescent-report# dada

%backup%s~ dreamhost_conversation
Adobe Illustrator CS6.dmg drunken_sailor.sce
Applications echo

Data galaxy—-python

Desktop game.sce

anim.py montyhall.sce

anim2.py nescent-report

bear281. log

nescent-report~

;agal:gugus>nano hello. txt

nagal:gugus>1ls

hello. txt

nagal:gugus>cat hello.txt

The quick fox jumps over the lay dog.

The difference between stupidity and genius is that genius has its limits.
Dogs have owners, cats have staff.

nagal:gugus>cp hello.txt byebye.txt

nagal:gugus>1ls

byebye.txt hello.txt
nagal:qugus>diff byebye.txt hello.txt
nagal:qugus>rm byebye.txt
nagal:gugus>cp hello.txt byebye.txt
nagal:gugus>emacs byebye.txt
nagal:qugus>diff byebye.txt hello.txt

1cl

< A quick fox jumps over the lay dog.

> The quick fox jumps over the lay dog.

nagal:gugus>

1. Log on a Linux machine or connect to one from a Windows machine (e.g. click on the Exceed icon
and then use putty to connect to the server kiwi. Enter your login (user name) and password at
relevant prompts.

2. Enter these commands at the UNIX prompt, and try to interpret the output. Ask questions and don't be
afraid to experiment (as a normal user you cannot do much harm):

O O 0O O O 0 ©

O 0O 0O O O O O

echo hello world
passwd

date

hostname

arch

uname -a

dmesg | more

(you may need to press g to quit)
uptime

who am i

who

id

last

finger

w

O 0 0O O OO0 0O OO0 0 0 0 0 0

o O

top (you may need to press g to quit)
echo $SHELL

echo {con,pre}{sent,fer}{s,ed}
man "automatic door"

man ls (you may need to press g to quit)
man who (you may need to press g to quit)
who can tell me why i got divorced
lost

clear

cal 2000

cal 9 1752 (notice anything unusual?)
bc -1 (type quit or press Ctrl-d to quit)
echo 5+4 | bc -1

yes please

(you may need to press Ctrl-c to quit)
time sleep 5
history

UNIX editors

http://en.wikipedia.org/wiki/Comparison of text editors

Most common basic UNIX editors

cat hello.txt | sort | unigq

cat hello.txt | grep "dog" | grep -v "cat"

To redirect standard output to a file instead of the screen, we use the > operator:

$ echo hello

hello

$ echo hello > output
$ cat output

hello

In this case, the contents of the file output will be destroyed if the file already exists. If instead we want to append the output of the echo
command to the file, we can use the >> operator:

$ echo bye >> output
$ cat output

hello

bye

To capture standard error, prefix the > operator with a 2 (in UNIX the file numbers 0, 1 and 2 are assigned to
standard input, standard output and standard error respectively), e.g.:

$ cat nonexistent 2>errors
$ cat errors
cat: nonexistent: No such file or directory

$

You can redirect standard error and standard output to two different files:
$ find . -print 1>errors 2>files

or to the same file:

$ find . -print l>output 2>output
or

$ find . -print >& output
Standard input can also be redirected using the < operator, so that input is read from a file instead of the
keyboard:

$ cat < output

hello

bye
You can combine input redirection with output redirection, but be careful not to use the same filename in
both places. For example:

$ cat < output > output

will destroy the contents of the file output. This is because the first thing the shell does when it sees the >
operator is to create an empty file ready for the output.

UNIX shell cheat sheet

The shell allows maintenance tasks, such creating, copying, moving, renaming,... of files and
directories/ Among many other things, it also allows to search for files and contents of files.

Focus cd change directory to the users home directory
Directory cd $HOME change directory to the users home directory
cd .. change directory to the directory that is outside
of the current one
mkdir directoryl Create directory directoryl
Manipulating mv filel file2 Rename filel to file2, works also with directories
cp filel file2 Copy filel to file2
cat filel > file2 Copy filel to file2 using pipelining
cat filel Show filel
less filel Show filel with paging, leave this mode using q,
Top is g, Bottom is G, paging is <spacebar>
nano filel Open text file editor (if all key-presses fail try
Cntrl-G, or Cntrl-C)
finding find . -name filel find a file name starting in the current directory

and all subdirectories
find dirl -name filel find a file name starting in the directory dirl

find . -name ’*fix’ find a file name containing the letters £1 starting
in the current directory
find . -name ’fix’ find a file name beginning with the letters fi

starting in the current directory
grep "is this" filel find all lines in filel that contain the text "is
this”
grep "is this" filel find all lines in filel that begin with "is this”
grep "[tTlhis" filel find all lines in filel that contain the text ”this”
or " This”
Changing text tr -s ’\r\n’ ’\n’ < filel > file2: Change all windows end-of-line
rs to UNIX end-of-line characters but
piping filel to file2

char:

